Pulmonary arterial hypertension (PH) is a chronic disease induced by a progressive increase in pulmonary vascular resistance and failure of the right heart function. A number of studies show that the development of PH is closely related to the gut microbiota, and lung-gut axis might be a potential therapeutic target in the PH treatment. A.
View Article and Find Full Text PDFAlthough Ligilactobacillus salivarius Li01 (Li01) has shown much promise in preventing multiple gastrointestinal diseases, the potential of the probiotic in alleviating constipation and the related mechanisms remain unclear. In this study, the effects of Li01 were evaluated in a loperamide-induced constipation mouse model. The results demonstrated that Li01 intervention can relieve constipation symptoms by improving water content, quantity, and morphology of feces and act as an intestinal barrier structure protector.
View Article and Find Full Text PDFCurrently approved therapeutical strategies for inflammatory bowel diseases (IBD) suffer from variable efficacy and association with risk of serious side effects. Therefore, efforts have been made in searching for alternative therapeutics strategies utilizing gut microbiota manipulation. In this study, we show that the probiotic strain Li01 (Li01) and the phytochemical prebiotic resveratrol (RSV) have synergistic effect in ameliorating colitis in mice.
View Article and Find Full Text PDFResveratrol (RSV) has been confirmed to confer multiple health benefits, and the majority of RSV tends to be metabolized in the gut microbiota after oral administration. In this study, the metabolism of RSV was investigated by using mouse models with distinct gut microbiota compositions: germ-free mice colonized with probiotics, conventional mouse, and DSS-induced colitis mouse models. The results demonstrated that in feces, the metabolites of RSV, including resveratrol sulfate (RES-sulfate), resveratrol glucuronide (RES-glucuronide), and dihydroresveratrol, significantly increased after probiotics colonized in germ-free mice.
View Article and Find Full Text PDFWith the development of high-throughput DNA sequencing and molecular analysis technologies, next-generation probiotics (NGPs) are increasingly gaining attention as live bacterial therapeutics for treatment of diseases. However, compared to traditional probiotics, NGPs are much more vulnerable to the harsh conditions in the human gastrointestinal tract, and their functional mechanisms in the gut are more complex. Prebiotics have been confirmed to play a critical role in improving the function and viability of traditional probiotics.
View Article and Find Full Text PDFThe low viability during gastrointestinal transit and poor mucoadhesion considerably limits the effectiveness of Ligilactobacillus salivarius Li01 (Li01) in regulating gut microbiota and alleviating inflammatory bowel disease (IBD). In this study, a delivery system was designed through layer-by-layer (LbL) encapsulating a single Li01cell with chitosan and alginate. The layers were strengthened by cross-linking to form a firm and mucoadhesive shell (~10 nm thickness) covering the bacterial cell.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
View Article and Find Full Text PDF