There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu.
View Article and Find Full Text PDFThe proper treatment of municipal solid waste incineration fly ash (MSWIFA) is a crucial concern due to its hazardous nature and potential environmental harm. To address this issue, this study innovatively utilized dravite and black liquor to solidify MSWIFA. The semi-dry pressing method was employed, resulting in the production of waste alkali-activated cementing material (WACM).
View Article and Find Full Text PDFIt is a green and sustainable path to establish cheap solid waste-based catalyst to establish peroxymonosulfate (PMS) catalytic system for the degradation of carbamazepine (CBZ) in water. In this study, durable copper tailing waste residue-based catalyst (CSWR) was prepared, and efficient CSWR/PMS system was constructed for catalytic degradation of CBZ for first time. The morphology and structure of CSWR changed from clumps to porous and loose amorphous by alkali leaching and medium temperature calcination.
View Article and Find Full Text PDFMunicipal solid waste incineration fly ash (MSWIFA) exsits in large quantitities and contains pollutants such as heavy metal. While solidification is one of the most effective methods for treating MSWIFA, this application is limited by cost, subsequent treatment, and simultaneous immobilization of anions and cations. This research demonstrated that under a certain initial pressure (20 MPa), a gelation reaction involving ball milling-modified tourmaline powder, a small amount of cement clinker, and MSWIFA forms a stable consolidated body and significantly reduces the risk of heavy metal dissolution.
View Article and Find Full Text PDFAiming at the existing problems of poor treatment effect and immersion stability of expansive soils, a slag soil hardener (SSH, developed by Wuhan University, China) was combined with different additives to dispose in this study. The free expansion rate, compressive strength, and immersion stability of samples were compared, and the influences of different additives, curing age, and dry density on the process and mechanism of improvement were discussed. The experimental results indicated that SSH combined with quicklime had the best improvement effect on expansive soils, in which the mass ratio of raw materials was: expansive soil/SSH/quicklime = 92/4/4, and the free expansion rate decreased from 45.
View Article and Find Full Text PDFIn acidic medium, hazardous heavy metals of lead-zinc tailing (LZT) are easily leachable and mobilizable. Thus, the hazard, amount, form, and complexity of the leached heavy metals under acidic precipitation become a major environmental concern. This work investigates the gangue minerals, toxicity, speciation, leaching characteristics of heavy metals in LZT under simulated acid rain, as well as immobilization effects and mechanisms using a sustainable binder.
View Article and Find Full Text PDFLead-zinc tailings (LZTs) are industrial by-products containing a large number of heavy metals that seriously harm the ecological environment and human health. This study was performed to propose a sustainable and efficient method for immobilizing Pb, Cr, and Cd in LZTs by using solid waste. To better assess the immobilization performance and mechanism, the leaching toxicity, fraction distribution, unconfined compressive strength, environmental risk assessment, and hydration products were explored.
View Article and Find Full Text PDFSoil contamination by multiple heavy metals and As is one of the major environmental hazards recognized worldwide. In this study, pinecone-biochar was used for stabilization and passivation of Pb, Cu, Zn, Cr, and As in contaminated soil around a smelter in Hubei province, China. The stabilization rate of heavy metals in soil can exceed 99%, and the leaching amount can meet the national standard of China (GB/T 5085.
View Article and Find Full Text PDFPhthalic acid esters (PAEs) are a class of biologically accumulated carcinogenic and teratogenic toxic chemicals that exist widely in the environment. This study, Pseudarthrobacter defluvii E5 was isolated from agricultural soils and showed efficient PAEs-degradation and -mineralization abilities for five PAEs, and encouraging PAEs tolerance and bioavailable range for dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) (0.25-1200 mg/L).
View Article and Find Full Text PDFThis research aimed to address the issue of residual manganese in electrolytic manganese residue (EMR), which is difficult to recycle and can easily become an environmental hazard and resource waste. This research developed a method for the efficient and selective recovery of manganese from EMR and the removal of ammonia nitrogen (ammonium sulfate) under the combined action of ball milling and oxalic acid. The optimum process parameters of this method were obtained through single-factor experiment and response-surface model.
View Article and Find Full Text PDFIndustrial solid waste (ISW) poses a huge potential threat to human health and the environment. To prevent pollution at its source, it is necessary to analyze the socioeconomic drivers and identify the key supply chains that cause changes in ISW generation. In this study, based on monetary input-output tables (MIOTs) in China from 2011 to 2015, structural decomposition analysis (SDA) was used to study the influence of socioeconomic drivers on common industrial solid waste (CISW) and hazardous waste (HW) generation.
View Article and Find Full Text PDFThis study was aimed at removing and stabilizing heavy metals (Hg, Zn, Cu, and Cd). A novel material (named A-EMS) for heavy metal removal was proposed by ball grinding activated electrolytic manganese slag (EMS) with low content of sodium hydroxide. For different application scenarios, the two physical properties of the materials were developed: the powdery A-EMS (powder) was used to remove heavy metals from wastewater.
View Article and Find Full Text PDFPhthalic acid esters (PAEs) are teratogenic and carcinogenic and mainly metabolized by microorganisms in sediment. A novel strain, Cupriavidus oxalaticus strain E3, was isolated and characterized from sediment for PAEs degradation. The transformation of dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) as the sole carbon source by strain E3 was systematically studied in the darkness through the kinetic studies and analysis of intermediates.
View Article and Find Full Text PDFThe lead-zinc areas of China have faced serious foulteousqulated heavy metal pollution. In this study, data on As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations in China's lead-zinc mine tailings were collected and screened from published literature (2015-2020). The contamination assessments, geographical distributions, and health risk assessments of the eight heavy metals were analyzed.
View Article and Find Full Text PDFCoal bottom ash (CBA) was modified on the basis of the engineering problems of low resource utilization of CBA and difficulty in treating HMS through alkali activation to synthesize geopolymers and solidify heavy metal-contaminated soil (HMS). The optimal values of geopolymers were selected through response surface methodology. Their mineral compositions, microstructure, and binding energy were determined through X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy tests, respectively.
View Article and Find Full Text PDF