Publications by authors named "Yiqiang Zheng"

As water-saturated polymer networks, hydrogels are a growing family of soft materials that have recently become promising candidates for flexible electronics application. However, it remains still difficult for hydrogel-based strain sensors to achieve the organic unity of mechanical properties, electrical conductivity, and water retention. To address this challenge, based on the template, the excellent properties of MXene nanoflakes (rich surface functional groups, high specific surface area, hydrophilicity, and conductivity) are fully utilized in this study to prepare the P(AA-co-AM)/MXene@PDADMAC semi-interpenetrating network (semi-IPN) hydrogel.

View Article and Find Full Text PDF

Background: The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis.

View Article and Find Full Text PDF

Sarcopenia is a progressive loss of muscle mass and function that is connected with increased hospital expenditures, falls, fractures, and mortality. Although muscle loss has been related to aging, injury, hormonal imbalances, and diseases such as malignancies, chronic obstructive pulmonary disease, heart failure, and kidney failure, the underlying pathogenic mechanisms of sarcopenia are unclear. Exercise-based interventions and multimodal strategies are currently being considered as potential therapeutic approaches to prevent or treat these diseases.

View Article and Find Full Text PDF

Objective: The femur is a typical human long bone with an irregular spatial structure. Femoral fractures are the most common occurrence in middle-aged and older adults. The structure of human bone tissue is very complex, and there are significant differences between individuals.

View Article and Find Full Text PDF

Background: Macrophages are one of the important cells in immune system. In this article, we aim to explore the regulatory role of miR-455-3p on proliferation and osteoblast differentiation of RAW264.7 cells.

View Article and Find Full Text PDF

In the process of knee replacement surgery, the use of tourniquet technology for hemostasis is the most common method. But the adverse reactions of tourniquets in knee replacement surgery have become more prominent in recent years. More and more scholars have begun to advocate the optimization of the use of tourniquet technology, thereby controlling the use of tourniquet technology.

View Article and Find Full Text PDF

Accurate and continuous detection of physiological signals without the need for an external power supply is a key technology for realizing wearable electronics as next-generation biomedical devices. Herein, it is shown that a MXene/black phosphorus (BP)-based self-powered smart sensor system can be designed by integrating a flexible pressure sensor with direct-laser-writing micro-supercapacitors and solar cells. Using a layer-by-layer (LbL) self-assembly process to form a periodic interleaving MXene/BP lamellar structure results in a high energy-storage capacity in a direct-laser-writing micro-supercapacitor to drive the operation of sensors and compensate the intermittency of light illumination.

View Article and Find Full Text PDF

Lysine 2-hydroxyisobutyrylation (K) is a novel protein posttranslational modification conserved in eukaryotes and prokaryotes. However, the biological significance of K remains largely unknown. Here, through screening the proteome-wide K modification sites in bacteria using a bioinformatic method, we identified a potential K site (K201) targeted by de-2-hyroxyisobutyrylase CobB at the substrate-binding site of FabI, an enoyl-acyl carry protein reductase (EnvM or FabI) in fatty acid biosynthesis pathway.

View Article and Find Full Text PDF

Cytosolic carboxypeptidases (CCPs) comprise a unique subfamily of M14 carboxypeptidases and are erasers of the reversible protein posttranslational modification- polyglutamylation. Potent inhibitors for CCPs may serve as leading compounds targeting imbalanced polyglutamylation. However, no efficient CCP inhibitor has yet been reported.

View Article and Find Full Text PDF

Mathematical modelers have attempted to capture the dynamics of Ebola transmission and to evaluate the effectiveness of control measures, as well as to make predictions about ongoing outbreaks. Many of their models consider only infections with typical symptoms, but Ebola presents clinically in a more complicated way. Even the most common symptom, fever, is not experienced by 13% of patients.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria have posed a grave threat to public health by causing a number of nosocomial infections in hospitals. Mathematical models have been used to study transmission dynamics of antibiotic-resistant bacteria within a hospital and the measures to control antibiotic resistance in nosocomial pathogens. Studies presented in Lipstich et al.

View Article and Find Full Text PDF

Mathematical models have been used to study Ebola disease transmission dynamics and control for the recent epidemics in West Africa. Many of the models used in these studies are based on the model of Legrand et al. (2007), and most failed to accurately project the outbreak's course (Butler, 2014).

View Article and Find Full Text PDF

This study uses county-level surveillance data to systematically analyze geographic variation and clustering of persons living with diagnosed HIV (PLWH) in the southern United States in 2011. Clusters corresponding to large metropolitan areas - including Miami, Atlanta, and Baltimore - had HIV prevalence rates higher (p < .001) than the regional rate.

View Article and Find Full Text PDF