Publications by authors named "Yiqiang Hu"

Intervertebral disc degeneration (IVDD) is a leading cause of low back pain that incurs large socioeconomic burdens. Growing evidence reveals that macroautophagy/autophagy dysregulation contributes to IVDD, but the exact role of autophagy and its regulatory mechanisms remain largely unknown. Here, we found that mechanical overloading impaired the autophagic flux of nucleus pulposus (NP) cells and .

View Article and Find Full Text PDF
Article Synopsis
  • Cinnamaldehyde (CA) activates TRPA1, helping to prevent ferroptosis in endothelial cells affected by high glucose levels, thereby enhancing cell function.
  • The development of a CA-loaded hydrogel (CA@HA-Gel) enables sustained release, which effectively reduces endothelial cell ferroptosis and promotes healing in diabetic wounds.
View Article and Find Full Text PDF

Infected fracture healing is a complicated process that includes intricate interactions at the cellular and molecular levels. In addition to angiogenesis and osteogenesis, the significance of neurogenesis in fracture healing has also been recognized in recent years. Here, a nanocomposite hydrogel containing pH-responsive zinc-gallium-humic acids (HAs) nanoparticles is developed.

View Article and Find Full Text PDF

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures.

View Article and Find Full Text PDF

The clinical role and underlying mechanisms of valproic acid (VPA) on bone homeostasis remain controversial. Herein, we confirmed that VPA treatment was associated with decreased bone mass and bone mineral density (BMD) in both patients and mice. This effect was attributed to VPA-induced elevation in osteoclast formation and activity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on finding new strategies to improve the healing of diabetic wounds, as existing treatments are inadequate.
  • Hypoxic exosomes derived from human umbilical vein endothelial cells (HUVECs) are proposed to aid in wound healing, with specific attention paid to a type of long non-coding RNA (lncRNA) called lncHAR1B.
  • The research demonstrates that using hypoxic exosome-loaded hydrogels significantly enhances wound healing compared to other methods, suggesting promising therapeutic options for diabetic patients.
View Article and Find Full Text PDF

Bone mesenchymal stem cells (BMSCs) play an important role in maintaining the dynamic balance of bone metabolism. Recent studies have reported that a decrease in the osteogenic function of MSCs is strongly associated with osteoporosis. Melatonin is a neuroendocrine hormone produced in the pineal gland and is essential in the physiological regulation.

View Article and Find Full Text PDF

Increasing data reveals that gelatin that has been methacrylated is involved in a variety of physiologic processes that are important for therapeutic interventions. Gelatin methacryloyl (GelMA) hydrogel is a highly attractive hydrogels-based bioink because of its good biocompatibility, low cost, and photo-cross-linking structure that is useful for cell survivability and cell monitoring. Methacrylated gelatin (GelMA) has established itself as a typical hydrogel composition with extensive biomedical applications.

View Article and Find Full Text PDF

Fracture combined with traumatic brain injury (TBI) is one of the most common and serious types of compound trauma in the clinic and is characterized by dysfunction of cellular communication in injured organs. Our prior studies found that TBI was capable of enhancing fracture healing in a paracrine manner. Exosomes (Exos), as small extracellular vesicles, are important paracrine vehicles for noncell therapy.

View Article and Find Full Text PDF

Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment.

View Article and Find Full Text PDF

Diabetic wounds are a common complication in diabetes patients. Due to peripheral nerve damage and vascular dysfunction, diabetic wounds are prone to progress to local ulcers, wound gangrene and even to require amputation, bringing huge psychological and economic burdens to patients. However, the current treatment methods for diabetic wounds mainly include wound accessories, negative pressure drainage, skin grafting and surgery; there is still no ideal treatment to promote diabetic wound healing at present.

View Article and Find Full Text PDF

Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury.

View Article and Find Full Text PDF
Article Synopsis
  • Bone, cartilage, and soft tissue healing is a complicated process that involves different types of cells working together after an injury.
  • Scientists are trying to figure out how the immune system affects this healing to help develop better treatments.
  • By studying how immune cells communicate with other cells, researchers hope to find new ways to make healing faster and more effective.
View Article and Find Full Text PDF

Background: Currently, we found that double reverse traction repositor (DRTR) is a treatment with operation convenience and fast in our clinical work. However, the clinical efficacy and safety of DRTR in the reduction of unstable intertrochanteric fractures in elderly patients remain unknown. Therefore, the study aimed to compare the clinical efficacy and safety of DRTR and traction table (TT) in the reduction of unstable intertrochanteric fractures in elderly patients.

View Article and Find Full Text PDF

Background: Postmenopausal bone loss, mainly caused by excessive bone resorption mediated by osteoclasts, has become a global public health burden. Metformin, a hypoglycemic drug, has been reported to have beneficial effects on maintaining bone health. However, the role and underlying mechanism of metformin in ovariectomized (OVX)-induced bone loss is still vague.

View Article and Find Full Text PDF

Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant , has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress.

View Article and Find Full Text PDF

Background: A coronal comminuted femoral intertrochanteric fracture is a special type of fracture that easily leads to internal fixation failure, and the current internal fixation techniques remain controversial. This study aims to evaluate the effect of traction-bed-assisted reduction and double-plate internal fixation in the treatment of comminuted and coronally split intertrochanteric femoral fracture.

Method: Retrospective analyses of the clinical data of 83 patients diagnosed with, and treated for, comminuted and coronally split intertrochanteric femoral fracture from December 2017 to November 2019 were conducted.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest.

View Article and Find Full Text PDF

Major traumatic tissue defects are common clinical problems often complicated by infection and local vascular dysfunction, processes which hinder the healing process. Although local application of growth factors or stem cells through various tissue engineering techniques are promising methods for the repair of tissue defects, limitations in their clinical application exist. Herein, we synthesized multifaceted nanohybrids composed of Quaternized chitosan (QCS), Graphene oxide (GO), and Polydopamine (PDA; QCS-GO-PDA).

View Article and Find Full Text PDF

MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies.

View Article and Find Full Text PDF

With the worldwide aging population, the prevalence of osteoporosis is on the rise, particularly the number of postmenopausal women with the condition. However, the various adverse side effects associated with the currently available treatment options underscore the need to develop novel therapies. In this study, we investigated the use of AQX-1125, a novel clinical-stage activator of inositol phosphatase-1 (SHIP1), in ovariectomized (OVX) mice, identifying a protective role.

View Article and Find Full Text PDF