Publications by authors named "Yiqian Wu"

Oxygen reduction reaction (ORR) kinetics is critically dependent on the precise modulation of the interactions between the key oxygen intermediates and catalytic active sites. Herein, a novel electrocatalyst is reported, featuring nitrogen-doped carbon-supported ultra-small copper oxide nanoparticles with the broken-symmetry C coordination filed sites, achieved by a mild γ-ray radiation-induced method. The as-synthesized catalyst exhibits an excellent ORR activity with a half-wave potential of 0.

View Article and Find Full Text PDF

Current video semantic segmentation tasks involve two main challenges: how to take full advantage of multi-frame context information, and how to improve computational efficiency. To tackle the two challenges simultaneously, we present a novel Multi-Granularity Context Network (MGCNet) by aggregating context information at multiple granularities in a more effective and efficient way. Our method first converts image features into semantic prototypes, and then conducts a non-local operation to aggregate the per-frame and short-term contexts jointly.

View Article and Find Full Text PDF

The presence of organic micro-pollutants (OMPs) in wastewater treatment effluents is becoming a major threat to the water safety for aquatic and human health. Photo-electrocatalytic based advanced oxidation process (AOP) is one of the emerging and effective techniques to degrade OMPs through oxidative mechanism. This study investigated the application of heterojunction based BiVO/BiOI photoanode for acetaminophen (40 μg L) removal in demineralized water.

View Article and Find Full Text PDF

Genome architecture and organization play critical roles in cell life. However, it remains largely unknown how genomic loci are dynamically coordinated to regulate gene expression and determine cell fate at the single cell level. We have developed an inducible system which allows Simultaneous Imaging and Manipulation of genomic loci by Biomolecular Assemblies (SIMBA) in living cells.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors.

View Article and Find Full Text PDF

Monocytes are important regulators for the maintenance of homeostasis in innate and adaptive immune system and have been reported to play important role in cancer progression. CD47-SIRPα recognition is a coinhibitory immune signal to inhibit phagocytosis in monocytes and macrophages and has been well-known as the "Don't eat me" signal. By using an approach of integrated sensing and activating proteins (iSNAPs), we have rewired the CD47-SIRPα axis to create iSNAP-M which activates pathways in engineered human monocytes (iSNAP-MC).

View Article and Find Full Text PDF

The safe utilization of heavy metal contaminated farmland has attracted extensive attention of the whole society, and there is an urgent need to develop novel high-efficiency amendments. To clarify the actual remediation effect and potential for large-scale application of sulfhydryl grafted palygorskite (SGP) in Cd polluted soil in wheat-rice rotation mode, a field-scale experiment was conducted. SGP at the dosages of 0.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common complication of hospitalization with high mortality. Approximately 30% of patients receiving cisplatin, the first-line chemotherapy treatment, develop AKI. NSC228155 is a novel compound with potential anti-cancer and anti-bacterial effects.

View Article and Find Full Text PDF

Despite its success in treating hematologic malignancies, chimeric antigen receptor (CAR) T cell therapy faces two major challenges which hinder its broader applications: the limited effectiveness against solid tumors and the nonspecific toxicities. To address these concerns, researchers have used synthetic biology approaches to develop optimization strategies. In this review, we discuss recent improvements on the CAR and other non-CAR molecules aimed to enhance CAR T cell efficacy and safety.

View Article and Find Full Text PDF

Focused ultrasound can deliver energy safely and non-invasively into tissues at depths of centimetres. Here we show that the genetics and cellular functions of chimeric antigen receptor T cells (CAR-T cells) within tumours can be reversibly controlled by the heat generated by short pulses of focused ultrasound via a CAR cassette under the control of a promoter for the heat-shock protein. In mice with subcutaneous tumours, locally injected T cells with the inducible CAR and activated via focused ultrasound guided by magnetic resonance imaging mitigated on-target off-tumour activity and enhanced the suppression of tumour growth, compared with the performance of non-inducible CAR-T cells.

View Article and Find Full Text PDF

A series of novel humidity-responsive and photosensitive polymer films (PCA-PAA-PEG) are prepared. These films can be patterning cross-linked by the photodimerization of coumarin pendant groups. The humidity-induced deformation can be well controlled by the pattern because of the different modulus and hydrophilicity between cross-linked and un-cross-linked segments.

View Article and Find Full Text PDF
Article Synopsis
  • - Recent advancements in synthetic biology have enabled the engineering of cells to respond to external stimuli, enhancing the effectiveness and control of CAR T therapy, although limitations in spatial and depth control remain a challenge in clinical applications.
  • - Mechanogenetics is emerging as a promising field, capable of targeting deep tissues with high precision, which could improve cancer immunotherapy outcomes.
  • - The review will explore mechanobiology and innovative designs for controllable CAR T cells, with a particular emphasis on utilizing mechanical control methods like ultrasound to address current CAR T therapy limitations.
View Article and Find Full Text PDF

T cells engineered to express chimeric antigen receptors (CARs) can recognize and engage with target cancer cells with redirected specificity for cancer immunotherapy. However, there is a lack of ideal CARs for solid tumor antigens, which may lead to severe adverse effects. Here, we developed a light-inducible nuclear translocation and dimerization (LINTAD) system for gene regulation to control CAR T activation.

View Article and Find Full Text PDF

Objective: To investigate the effects of quercetin on the apoptosis of platelets and to analyze the intrinsic mechanism.

Methods: Firstly, the effects of quecetin on the apoptosis of platelets was detected by flow cytometry. Secondly, Western blot was used to detect the expression of apoptosis-related proteins in the platelets treated with quercetin for 2 and 4 day.

View Article and Find Full Text PDF

While engineered chimeric antigen receptor (CAR) T cells have shown promise in detecting and eradicating cancer cells within patients, it remains difficult to identify a set of truly cancer-specific CAR-targeting cell surface antigens to prevent potentially fatal on-target off-tumor toxicity against other healthy tissues within the body. To help address this issue, we present a novel tamoxifen-gated photoactivatable split-Cre recombinase optogenetic system, called TamPA-Cre, that features high spatiotemporal control to limit CAR T cell activity to the tumor site. We created and optimized a novel genetic AND gate switch by integrating the features of tamoxifen-dependent nuclear localization and blue-light-inducible heterodimerization of Magnet protein domains (nMag, pMag) into split Cre recombinase.

View Article and Find Full Text PDF

Introduction of a heteroatom into a fluorophore was carried out for coumarin through a replacement of its bridging oxygen atom with a silicon atom. The maximum-emission wavelength of Si-coumarin (SiC B) bathochromically shifted from 426 nm in cyclohexane to 626 nm in water. The adipogenic differentiation processes in mesenchymal stem cells were monitored using SiC B.

View Article and Find Full Text PDF

Lck plays crucial roles in TCR signaling. We developed a new and sensitive FRET biosensor (ZapLck) to visualize Lck kinase activity with high spatiotemporal resolutions in live cells. ZapLck revealed that 62% of Lck signal was preactivated in T-cells.

View Article and Find Full Text PDF

Two protein circuit systems, split-protease-cleavable orthogonal coiled-coil logic (SPOC logic) and circuits of hacked orthogonal modular proteases (CHOMP), have been developed to permit rapid and logic function-based control of mammalian cellular signaling.

View Article and Find Full Text PDF

Rest contributes a large part of animals' daily life, and animals usually rest in two ways, standing or in recumbence. Small or medium sized ungulates bed to rest in most cases, and standing rest is very rare and hardly seen. Here we described a standing rest behavior of Tibetan antelopes (Pantholops hodgsonii) living on the Tibet Plateau which has not been reported before.

View Article and Find Full Text PDF
Article Synopsis
  • The Qidong hepatitis B virus (HBV) infection cohort (QBC) is a long-term study in Qidong, China, aimed at examining the links between HBV infection and primary liver cancer (PLC) in a high-risk population. Participants aged 20-65 were surveyed and followed up with medical testing from 1991 to 2017, resulting in 201 cases of PLC.
  • The study found a significantly higher incidence of PLC among HBsAg-positive individuals compared to HBsAg-negative ones, with the highest risks observed in those with both HBsAg and HBeAg positivity, highlighting the importance of HBV status in predicting PLC risk.
  • Researchers identified novel mutations
View Article and Find Full Text PDF
Article Synopsis
  • Monitoring enzymatic activities at cell surfaces is tough due to limitations in FRET-based biosensors, which struggle with transport and membrane integration.
  • A new hybrid biosensor was developed using a monobody variant (PEbody) that binds to a specific dye, enabling real-time visualization of intercellular junction dynamics.
  • This biosensor demonstrated varying levels of MT1-MMP activities at different types of cell-cell contacts, highlighting the potential of directed evolution and design techniques for better monitoring molecular interactions in live cells.
View Article and Find Full Text PDF

While cell-based immunotherapy, especially chimeric antigen receptor (CAR)-expressing T cells, is becoming a paradigm-shifting therapeutic approach for cancer treatment, there is a lack of general methods to remotely and noninvasively regulate genetics in live mammalian cells and animals for cancer immunotherapy within confined local tissue space. To address this limitation, we have identified a mechanically sensitive Piezo1 ion channel (mechanosensor) that is activatable by ultrasound stimulation and integrated it with engineered genetic circuits (genetic transducer) in live HEK293T cells to convert the ultrasound-activated Piezo1 into transcriptional activities. We have further engineered the Jurkat T-cell line and primary T cells (peripheral blood mononuclear cells) to remotely sense the ultrasound wave and transduce it into transcriptional activation for the CAR expression to recognize and eradicate target tumor cells.

View Article and Find Full Text PDF

The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion.

View Article and Find Full Text PDF

Background: Cytoskeletal stress fibers (SFs) play important roles in cell rheology. Oxidative stress, as caused by excessive hydrogen peroxide (H2O2) or other reactive oxygen species, can cause cell damages via multiple pathways. Stress fiber mechanics in an oxidative environment is important for the understanding of such pathological challenges.

View Article and Find Full Text PDF