Publications by authors named "Yiqi Gong"

Ischemic cardiomyopathy, driven by loss of cardiomyocytes and inadequate proliferative response, persists to be a major global health problem. Using a functional high-throughput screening, we assessed differential proliferative potential of 2019 miRNAs after transient hypoxia by transfecting both miR-inhibitor and miR-mimic libraries in human iPSC-CM. Whereas miR-inhibitors failed to enhance EdU uptake, overexpression of 28 miRNAs substantially induced proliferative activity in hiPSC-CM, with an overrepresentation of miRNAs belonging to the primate-specific C19MC-cluster.

View Article and Find Full Text PDF

Engineering a conduction-consistent cardiac patch has direct implications to biomedical research. However, there is difficulty in obtaining and maintaining a system that allows researchers to study physiologically relevant cardiac development, maturation, and drug screening due to the issues around inconsistent contractions of cardiomyocytes. Butterfly wings have special nanostructures arranged in parallel, which could help generate the alignment of cardiomyocytes to better mimic the natural heart tissue structure.

View Article and Find Full Text PDF

The healthy human heart has special directional arrangement of cardiomyocytes and a unique electrical conduction system, which is critical for the maintenance of effective contractions. The precise arrangement of cardiomyocytes (CMs) along with conduction consistency between CMs is essential for enhancing the physiological accuracy of cardiac model systems. Here, we prepared aligned electrospun rGO/PLCL membranes using electrospinning technology to mimic the natural heart structure.

View Article and Find Full Text PDF

Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization.

View Article and Find Full Text PDF

Yohimbine is a highly selective and potent α-adrenoceptor antagonist, which is usually treated as an adjunction for impotence, as well for weight loss and natural bodybuilding aids. However, it was recently reported that Yohimbine causes myocardial injury and controversial results were reported in the setting of cardiac diseases. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to explore electrophysiologic characterization after exposure to Yohimbine.

View Article and Find Full Text PDF

Background: Ventricular-like human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibit the electrophysiological characteristics of spontaneous beating. Previous studies demonstrated that dexmedetomidine (DMED), a highly selective and widely used α-adrenoceptor agonist for sedation, analgesia, and stress management, may induce antiarrhythmic effects, especially ventricular tachycardia. However, the underlying mechanisms of the DMED-mediated antiarrhythmic effects remain to be fully elucidated.

View Article and Find Full Text PDF

Stem-cell based differentiation for disease modeling offers great value to explore the molecular and functional underpinnings driving many types of cardiomyopathy and congenital heart diseases. Nevertheless, one major caveat in the application of differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) involves the immature phenotype of the CMs. Most of the existing methods need complex apparatus and require laborious procedures in order to monitor the cardiac differentiation/maturation process and often result in cell death.

View Article and Find Full Text PDF