The addition of binders to energetic materials is known to complicate the thermal decomposition process of such materials. To assess this effect, the present work studied the thermal decomposition of cyclotrimethylene trinitramine (RDX)/hydroxy-terminated polybutadiene (HTPB) mixtures and of pure RDX over the temperature range of 2000-3500 K by combining the classical reaction and first-principles molecular dynamics methods. The incorporation of HTPB as a binder was found to significantly reduce the decomposition rate of RDX.
View Article and Find Full Text PDF1,3,3-Trinitroazetidine (TNAZ) has good thermal stability and low shock sensitivity, among other properties, and it has broad prospects in insensitive ammunition applications. In this study, a molecular dynamics calculation based on the ReaxFF-lg force field and multiscale shock technique (MSST) was used to simulate the shock-induced chemical reaction of TNAZ with different shock wave directions. The results showed that the shock sensitivity of TNAZ was in the order of [100] > [010] > [001].
View Article and Find Full Text PDF