Lung metastasis, the most frequent metastatic pattern in hepatocellular carcinoma, is an important contributor to poor prognosis. However, the mechanisms responsible for lung metastasis in hepatocellular carcinoma remain unknown. Aiming to explore these mechanisms, weighted gene coexpression network analysis (WGCNA) was firstly used to find hub genes related to lung metastasis.
View Article and Find Full Text PDFHepatitis B virus (HBV) infection is a major risk factor causing hepatocellular carcinoma (HCC) development, but the molecular mechanisms are not fully elucidated. It has been reported that virus infection induces ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) expression, the latter participates in tumor progression. Therefore, the aim of the present study was to investigate whether HBV induced HCC malignancy ENPP2.
View Article and Find Full Text PDFEZH2, a histone methyltransferase, has been shown to involve in cancer development and progression via epigenetic regulation of tumor suppressor microRNAs, whereas BMI1, a driver of hepatocellular carcinoma (HCC), is a downstream target of these microRNAs. However, it remains unclear whether EZH2 can epigenetically regulate microRNA expression to modulate BMI1-dependent hepatocarcinogenesis. Here, we established that high EZH2 expression correlated with enhanced tumor size, elevated metastasis, increased relapse, and poor prognosis in HCC patients.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2020
Background: Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis. Previous studies revealed that the tumor microenvironment (TME) plays an important role in HCC progression, recurrence, and metastasis, leading to poor prognosis. However, the effects of genes involved in TME on the prognosis of HCC patients remain unclear.
View Article and Find Full Text PDF