The concept of gait synergy provides novel human-machine interfaces and has been applied to the control of lower limb assistive devices, such as powered prostheses and exoskeletons. Specifically, on the basis of gait synergy, the assistive device can generate/predict the appropriate reference trajectories precisely for the affected or missing parts from the motions of sound parts of the patients. Optimal modeling for gait synergy methods that involves optimal combinations of features (inputs) is required to achieve synergic trajectories that improve human-machine interaction.
View Article and Find Full Text PDFElectrolyte optimization, such as using fluoride-bearing electrolytes, is regarded as an effective way to improve the cycle performance of lithium metal batteries (LMBs), but the promotion mechanisms of the electrolytes are in controversy due to the lack of quantitative understanding of the reaction products during cycling. Here, taking several fluorinated electrolytes as models, we use mass spectrometry titration (MST) and solid state nuclear magnetic resonance (NMR) techniques to quantify the evolution of dead Li metal, solid electrolyte interphases (SEI) and lithium hydride (LiH) during cycling. Our quantitative results clearly disclose that lithium difluoro(oxalato)borate (LiODFB) is able to inhibit the formation of SEI and LiH while fluoroethylene carbonate (FEC) mainly inhibits the formation of dead Li metal.
View Article and Find Full Text PDFI am working as both a TEFL teacher and an SLA researcher in China, doing SLA research. Recently, I have been working on new approaches to data analysis and I've found that a book titled "Data Visualization and Analysis in Second Language Research" by Dr. Guilherme D.
View Article and Find Full Text PDF