The impact of heavy metal ions on the biodenitrification process remains unknown, which is the key to understand the nitrogen cycle in estuarine areas. Here, denitrification rate and the abundance of five denitrifying enzyme genes (narG, nirK, napA, norB and nosZ) in Liaohe Estuary sediments were examined, and the community structure of nirK denitrifying bacteria was also analyzed. The results demonstrate a significant positive correlation between heavy metal content (Cu, Zn, and Cr) and the denitrification rate, and the abundance of napA/norB (periplasmic nitrate reductase and nitric-oxide reductase) in sediments.
View Article and Find Full Text PDFCommercially available and inexpensive lithium -butoxide ( BuOLi) acts as a good precatalyst for the hydroboration of esters, lactones, and epoxides using pinacolborane as a borylation agent. Functional groups such as cyano-, nitro-, amino-, vinyl, and alkynyl are unaffected under the presented hydroboration process, representing high chemoselectivity. This transformation has also been effectively applied to the synthesis of key intermediates of Erlotinib and Cinacalcet.
View Article and Find Full Text PDFLithium-promoted hydroboration of alkynes and alkenes using commercially available hexamethyldisilazane lithium as a precatalyst and HBpin as a hydride source has been developed. This method will be appealing for organic synthesis because of its remarkable substrate tolerance and good yields. Mechanistic studies revealed that the hydroboration proceeds through the in situ-formed BH species, which acts to drive the turnover of the hydroboration of alkynes and alkenes.
View Article and Find Full Text PDF