Objectives: This study aimed to elucidate the correlation of Visceral Adiposity Index (VAI) with prostate cancer (PCa) among men aged 40 years and older in the United States.
Methods: Analysis included multivariate linear and logistic regression, smoothing curve fitting, and threshold effect evaluation using 2003-2010 National Health and Nutrition Examination Survey (NHANES) data. The stability of this relationship across demographic groups was assessed via subgroup analyses and interaction tests.
Adv Sci (Weinh)
December 2024
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness.
View Article and Find Full Text PDFBackground: Education level significantly impacts individual health outcomes. This research investigates the correlation between education level and the prevalence of overactive bladder (OAB).
Methods: This study employed data from the National Health and Nutrition Examination Survey (NHANES) spanning 2005 to 2020 to conduct a thorough investigation of the association between educational level and OAB using multivariable logistic regression, smooth curve fitting, and generalized additive model.
Background: Systemic immune-inflammation index (SII) provides convincing evaluation of systemic immune and inflammatory condition in human body. Its correlation with prostate cancer (PCa) risk remains uncharted. The principal objective of this investigation was to elucidate the association between SII and the risk for PCa in middle-aged and elderly males.
View Article and Find Full Text PDFMammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved.
View Article and Find Full Text PDFHair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs.
View Article and Find Full Text PDFIrreversible damage to hair cells (HCs) in the cochlea leads to hearing loss. Cochlear supporting cells (SCs) in the murine cochlea have the potential to differentiate into HCs. Neuron membrane glycoprotein M6B (Gpm6b) as a four-transmembrane protein is a potential regulator of HC regeneration according to our previous research.
View Article and Find Full Text PDFMutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported.
View Article and Find Full Text PDFOTOF mutations are the principal causes of auditory neuropathy. There are reports on Otof-related gene therapy in mice, but there is no preclinical research on the drug evaluations. Here, Anc80L65 and the mouse hair cell-specific Myo15 promoter (mMyo15) are used to selectively and effectively deliver human OTOF to hair cells in mice and nonhuman primates to evaluate the efficacy and safety of OTOF gene therapy drugs.
View Article and Find Full Text PDFInner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia.
View Article and Find Full Text PDFHearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.
View Article and Find Full Text PDF