MicroRNAs (miRNAs) are abundant in neurons and play key roles in the function and development of the nervous system. This study focuses on the function of miR-379-5p in neurological function recovery during ischemic stroke. The expression of miR-379-5p in the serum of patients with ischemic stroke was determined.
View Article and Find Full Text PDFAppropriate autophagy has protective effects on ischemic nerve tissue, while excessive autophagy may cause cell death. The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia. Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke.
View Article and Find Full Text PDFThis study aimed to investigate whether ischemic postconditioning (IpostC) alleviates cerebral ischemia/reperfusion (I/R) injury involved in autophagy. Adult Sprague-Dawley rats were divided into five groups: sham (sham surgery), I/R (middle cerebral artery occlusion [MCAO] for 100 min, then reperfusion), IpostC (MCAO for 100 min, reperfusion for 10 min, MCAO for 10 min, then reperfusion), IpostC+3MA (3-methyladenine, an autophagy inhibitor, administered 30 min before first reperfusion), and IpostC+Veh (vehicle control for IpostC+3MA group). Infarct volume was measured using cresyl violet staining.
View Article and Find Full Text PDFOur previous findings have demonstrated that autophagy regulation can alleviate the decline of learning and memory by eliminating deposition of extracellular beta-amyloid peptide (Aβ) in the brain after stroke, but the exact mechanism is unclear. It is presumed that the regulation of beta-site APP-cleaving enzyme 1 (BACE1), the rate-limiting enzyme in metabolism of Aβ, would be a key site. Neuro-2a/amyloid precursor protein 695 (APP695) cell models of cerebral ischemia were established by oxygen-glucose deprivation to investigate the effects of Rapamycin (an autophagy inducer) or 3-methyladenine (an autophagy inhibitor) on the expression of BACE1.
View Article and Find Full Text PDFEvidence suggests that autophagy may be a new therapeutic target for stroke, but whether activation of autophagy increases or decreases the rate of neuronal death is still under debate. This review summarizes the potential role and possible signaling pathway of autophagy in neuronal survival after cerebral ischemia and proposes that autophagy has dual effects.
View Article and Find Full Text PDFNeural Regen Res
August 2013
Autophagy is involved in neural cell death after cerebral ischemia. Our previous studies showed that rapamycin-induced autophagy decreased the rate of apoptosis, but the rate of apoptosis was creased after the autophagy inhibitor, 3-methyladenine, was used. In this study, a suture-occluded method was performed to generate a rat model of brain ischemia.
View Article and Find Full Text PDFObjective: We examined the demographic and clinical profiles of Parkinson's disease in Shanghai, China, to assist in disease management and provide comparative data on Parkinson's disease prevalence, phenotype, and progression among different regions and ethnic groups.
Methods: A door-to-door survey and follow-up clinical examinations identified 180 community-dwelling Han-Chinese Parkinson's disease patients (104 males, 76 females).
Results: The average age at onset was 65.
Mitochondrial autophagy (Mitophagy), the specific autophagic elimination of mitochondria, has been related with several forms of degenerative disease and mitochondrial dysfunction. It is involved in multiple cellular processes. In addition to one of its established key roles in the maintenance of normal cellular phenotype and function, there is growing interest in the concept that targeted modulation of mitophagy may reduce cerebral ischaemia/reperfusion injury.
View Article and Find Full Text PDFCurcumin, a major active compound of Curcuma longa, has been reported to have potent neuroprotective activities. However to date, the relevant mechanisms still remain unclear. In this study, we report that curcumin selectively inhibits L-type Ca(2+) channel currents in cultured rat hippocampal neurons.
View Article and Find Full Text PDFIn neurodegenerative disorders such as Parkinson's disease (PD), autophagy is implicated in the process of dopaminergic neuron cell death. The α-synuclein protein is a major component of Lewy bodies and Lewy neurites, and mutations in α-synuclein have been implicated in the etiology of familial PD. The current work investigates the mechanisms underlying the therapeutic effects of the autophagy-stimulating antibiotic rapamycin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD.
View Article and Find Full Text PDF