Publications by authors named "Yinyan Lin"

Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals.

View Article and Find Full Text PDF

Magnetoactive soft material (MASM) is distinguished for multifunctional shape manipulations under magnetic actuation, thereby holding a great promise in soft robotics, actuators, electronics, and metamaterials. However, the current research of MASM with continuum hard-magnetic profiles focuses little on the transformation mechanism, high dimensional shape transformation, and multistable locomotion. Herein, we developed a systematic methodology for programmable transformation and controllable locomotion of MASM with 3D-patterned continuum magnetization.

View Article and Find Full Text PDF

Phospholipase D (PLD) and its metabolic active product phosphatidic acid (PA) engage in a wide range of physiopathologic processes in the cell. PLDs have been considered as a potential and promising drug target. Recently, the crystal structures of PLDs in mammalian and plant have been solved at atomic resolution.

View Article and Find Full Text PDF

Phosphoinositides are important signaling molecules involved in the regulation of vesicular trafficking. It has been implicated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P] is involved in insulin-regulated GLUT4 translocation in adipocytes. However, it remains unclear where and how PI(4,5)P regulates discrete steps of GLUT4 vesicle translocation in adipocytes, especially on the exocytic arm of regulation.

View Article and Find Full Text PDF

Microneedle arrays (MAs) are among the most promising transdermal drug delivery systems in the last decades due to its minimally invasive nature, convenient operation, and first-pass-metabolism avoidance. However, most MA fabrication methods are difficult to operate, need multiple steps, or require expensive equipment. A novel magnetorheological drawing lithography approach was proposed to rapidly fabricate a flexible microneedle array (FMA) for transdermal drug delivery.

View Article and Find Full Text PDF

To date, only approximately 20 drugs synthesized with small molecules have been approved by the FDA for use in traditional transdermal patches (TTP) owing to the extremely low permeation rate of the skin barrier for macromolecular drugs. A novel touch-actuated microneedle array patch (TMAP) was developed for transdermal delivery of liquid macromolecular drugs. TMAP is a combination of a typical TTP and a solid microneedle array (MA).

View Article and Find Full Text PDF

With natural evolution, honeybee stinger with microbarbs can easily penetrate and trap in the skin of hostile animals to inject venom for self-defense. We proposed a novel three-dimensional additive manufacturing method, namely magnetorheological drawing lithography, to efficiently fabricate a bioinspired microneedle imitating a honeybee stinger. Under the assistance of an external magnetic field, a parent microneedle was directly drawn on the pillar tip, and tilted microbarbs were subsequently formed on the four sides of the parent microneedle.

View Article and Find Full Text PDF

Physiologically, the thoracic (THO) and abdominal (ABD) movement signals, captured using wearable piezo-electric bands, provide information about various types of apnea, including central sleep apnea (CSA) and obstructive sleep apnea (OSA). However, the use of piezo-electric wearables in detecting sleep apnea events has been seldom explored in the literature. This study explored the possibility of identifying sleep apnea events, including OSA and CSA, by solely analyzing one or both the THO and ABD signals.

View Article and Find Full Text PDF