The length of cilia is robustly regulated [1]. Previous data suggest that cells possess a sensing system to control ciliary length [2-5]. However, the details of the mechanism are currently not known [6, 7].
View Article and Find Full Text PDFCalcium has been implicated in the motility, assembly, disassembly, and deflagellation of the eukaryotic flagellum or cilium (exchangeable terms). Calmodulin (CaM) is known to be critical for flagellar motility; however, it is unknown whether and how CaM is involved in other flagella-related activities. We have studied CaM in Chlamydomonas, a widely used organism for ciliary studies.
View Article and Find Full Text PDFTownes-Brocks syndrome (TBS) is characterized by a spectrum of malformations in the digits, ears, and kidneys. These anomalies overlap those seen in a growing number of ciliopathies, which are genetic syndromes linked to defects in the formation or function of the primary cilia. TBS is caused by mutations in the gene encoding the transcriptional repressor SALL1 and is associated with the presence of a truncated protein that localizes to the cytoplasm.
View Article and Find Full Text PDFPrimary cilia, which are essential for normal development and tissue homeostasis, are extensions of the mother centriole, but the mechanisms that remodel the centriole to promote cilia initiation are poorly understood. Here we show that mouse embryos that lack the small guanosine triphosphatase RSG1 die at embryonic day 12.5, with developmental abnormalities characteristic of decreased cilia-dependent Hedgehog signaling.
View Article and Find Full Text PDFCell Mol Life Sci
September 2017
Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics.
View Article and Find Full Text PDFIntraflagellar transport (IFT) particles or trains are composed of IFT-A and IFT-B complexes. To assess the working mechanism of the IFT-A complex in IFT and ciliogenesis, we have analyzed ift43 mutants of Chlamydomnonas in conjunction with mutants of the other IFT-A subunits. An ift43 null mutant or a mutant with a partial deletion of the IFT43 conserved domain has no or short flagella.
View Article and Find Full Text PDFAs motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress.
View Article and Find Full Text PDFDefects in ciliary assembly, maintenance, and signaling are associated with various human diseases and developmental disorders, termed ciliopathies. Eukaryotic flagella and cilia (interchangeable terms) are microtubule-based organelles. Thus, microtubule dynamics and microtubule-dependent transport are predicted to affect the structural integrity and functionality of cilia profoundly.
View Article and Find Full Text PDFCilia and flagella are dynamic organelles that undergo assembly and disassembly during each cell cycle. They are structurally polarized, and the mechanisms by which these organelles are disassembled are incompletely understood. Here, we show that flagellar resorption occurs in two distinct phases of length-dependent regulation.
View Article and Find Full Text PDFVertebrate hedgehog signaling is coordinated by the differential localization of the receptors patched-1 and Smoothened in the primary cilium. Cilia assembly is mediated by intraflagellar transport (IFT), and cilia defects disrupt hedgehog signaling, causing many structural birth defects. We generated Ift25 and Ift27 knockout mice and show that they have structural birth defects indicative of hedgehog signaling dysfunction.
View Article and Find Full Text PDFThe anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR.
View Article and Find Full Text PDFThe assembly and maintenance of cilia depends on intraflagellar transport (IFT). Activated IFT motor kinesin-II enters the cilium with loaded IFT particles comprising IFT-A and IFT-B complexes. At the ciliary tip, kinesin-II becomes inactivated, and IFT particles are released.
View Article and Find Full Text PDFChlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities.
View Article and Find Full Text PDF