Publications by authors named "Yinu Wang"

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth.

View Article and Find Full Text PDF

Purpose: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development.

View Article and Find Full Text PDF

Following a period of slow progress, the completion of genome sequencing and the paradigm shift relative to the cell of origin for high grade serous ovarian cancer (HGSOC) led to a new perspective on the biology and therapeutic solutions for this deadly cancer. Experimental models were revisited to address old questions, and improved tools were generated. Additional pathways emerging as drivers of ovarian tumorigenesis and key dependencies for therapeutic targeting, in particular, VEGF-driven angiogenesis and homologous recombination deficiency, were discovered.

View Article and Find Full Text PDF

Reprogramming of cellular metabolism is a hallmark of cancer. Cancer cells undergo metabolic adaptations to maintain tumorigenicity and survive under the attack of immune cells and chemotherapy in the tumor microenvironment. Metabolic alterations in ovarian cancer in part overlap with findings from other solid tumors and in part reflect unique traits.

View Article and Find Full Text PDF

Development of resistance to platinum (Pt) in ovarian cancer remains a major clinical challenge. Here we focused on identifying epitranscriptomic modifications linked to Pt resistance. Fat mass and obesity-associated protein (FTO) is a N6-methyladenosine (m6A) RNA demethylase that we recently described as a tumor suppressor in ovarian cancer.

View Article and Find Full Text PDF

Unlabelled: Cancer stem cells (CSC) represent a population of cancer cells responsible for tumor initiation, chemoresistance, and metastasis. Here, we identified the H3K79 methyltransferase disruptor of telomeric silencing-1-like (DOT1L) as a critical regulator of self-renewal and tumor initiation in ovarian CSCs. DOT1 L was upregulated in ovarian CSCs versus non-CSCs.

View Article and Find Full Text PDF

Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression.

View Article and Find Full Text PDF
Article Synopsis
  • Increased glycolysis is a well-known feature of cancer, but the metabolic changes in cancer cells that become resistant to treatment, like cisplatin, are not fully understood.
  • Research reveals that cisplatin-resistant ovarian cancer cells shift their metabolism from glucose to fatty acid uptake, showing enhanced fatty acid metabolism and reduced glucose usage.
  • Targeting the fatty acid metabolism through beta-oxidation inhibitors, combined with cisplatin treatment, can effectively reduce the growth of cisplatin-resistant ovarian cancer cells both in the lab and in animal models.
View Article and Find Full Text PDF

Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity.

View Article and Find Full Text PDF

Background: Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated.

Methods: Here, by using a TG2 syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression.

View Article and Find Full Text PDF

Ovarian cancer remains one of the deadliest gynecologic malignancies affecting women, and development of resistance to platinum remains a major barrier to achieving a cure. Multiple mechanisms have been identified to confer platinum resistance. Numerous miRNAs have been linked to platinum sensitivity and resistance in ovarian cancer.

View Article and Find Full Text PDF

Defining traits of platinum-tolerant cancer cells could expose new treatment vulnerabilities. Here, new markers associated with platinum-tolerant cells and tumors were identified using and ovarian cancer models treated repetitively with carboplatin and validated in human specimens. Platinum-tolerant cells and tumors were enriched in ALDH cells, formed more spheroids, and expressed increased levels of stemness-related transcription factors compared with parental cells.

View Article and Find Full Text PDF

-Methyladenosine (mA) is the most abundant modification of mammalian mRNAs. RNA methylation fine tunes RNA stability and translation, altering cell fate. The fat mass- and obesity-associated protein (FTO) is an mA demethylase with oncogenic properties in leukemia.

View Article and Find Full Text PDF
Article Synopsis
  • A population of cancer stem cells (CSCs) contributes to the recurrence of ovarian cancer (OC), prompting research into targeted therapies to eliminate them.
  • A new molecule called CM37 inhibits ALDH1A1 activity, which is a marker for CSCs in OC, leading to decreased cell growth and reduced expression of stem cell markers.
  • CM37 treatment results in increased DNA damage and reactive oxygen species (ROS) levels in OC cells, suggesting its potential as a promising strategy for targeting treatment-resistant ovarian cancer.
View Article and Find Full Text PDF

In high-grade serous ovarian cancer (OC), chemotherapy eliminates the majority of tumor cells, leaving behind residual tumors enriched in OC stem cells (OCSC). OCSC, defined as aldehyde dehydrogenase-positive (ALDH+), persist and contribute to tumor relapse. Inflammatory cytokine IL-6 is elevated in residual tumors after platinum treatment, and we hypothesized that IL-6 plays a critical role in platinum-induced OCSC enrichment.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum.

View Article and Find Full Text PDF

Purpose: To investigate SGI-110 as a "chemosensitizer" in ovarian cancer and to assess its effects on tumor suppressor genes (TSG) and chemoresponsiveness-associated genes silenced by DNA methylation in ovarian cancer.

Experimental Design: Several ovarian cancer cell lines were used for in vitro and in vivo platinum resensitization studies. Changes in DNA methylation and expression levels of TSG and other cancer-related genes in response to SGI-110 were measured by pyrosequencing and RT-PCR.

View Article and Find Full Text PDF

Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC).

View Article and Find Full Text PDF

Combination therapy with decitabine, a DNMTi and carboplatin resensitized chemoresistant ovarian cancer (OC) to platinum inducing promising clinical activity. We investigated gene-expression profiles in tumor biopsies to identify decitabine-reactivated pathways associated with clinical response. Gene-expression profiling was performed using RNA from paired tumor biopsies before and 8 days after decitabine from 17 patients with platinum resistant OC.

View Article and Find Full Text PDF