Edge-enhanced imaging by spiral phase contrast has proven instrumental in revealing phase or amplitude gradients of an object, with notable applications spanning feature extraction, target recognition, and biomedical fields. However, systems deploying spiral phase plates encounter limitations in phase mask modulation, hindering the characterization of the modulation function during image reconstruction. To address this need, we propose and demonstrate an innovative nonlinear reconstruction method using a Laguerre-Gaussian composite vortex filter, which modulates the spectrum of the target.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters.
View Article and Find Full Text PDFNickel performs excellently in C-C and C-X cross-coupling reactions. Here, we disclose a Ni(II)-catalyzed asymmetric C-P cross-coupling reaction to afford valuable chiral heterocyclic tertiary phosphine oxides. The method is mild and efficient, which invokes a self-sustained nickel catalytic cycle without an external reductant, light irradiation, or electricity.
View Article and Find Full Text PDFSingle-pixel cameras have recently emerged as promising alternatives to multi-pixel sensors due to reduced costs and superior durability, which are particularly attractive for mid-infrared (MIR) imaging pertinent to applications including industry inspection and biomedical diagnosis. To date, MIR single-pixel photon-sparse imaging has yet been realized, which urgently calls for high-sensitivity optical detectors and high-fidelity spatial modulators. Here, we demonstrate a MIR single-photon computational imaging with a single-element silicon detector.
View Article and Find Full Text PDFA simple but effective method for the detection of miRNAs was proposed by integrating exonuclease-III assisted target recycling amplification and repeated-fishing strategy. In the proposed method, exonuclease-III assisted target recycling amplification reaction is adopted to produce a large amount of DNA fragments with fluorescence group at its 5' end in the presence of the target miRNA, which are then repeatedly fished out from the reaction mixture by a gold foil modified with a capture probe and transferred into a so-called 'product tube'. The amount of the target miRNA can then be determined from the fluorescence measurement of the solution in the 'product tube'.
View Article and Find Full Text PDFFAM122A is a housekeeping gene and highly conserved in mammals. More recently, we have demonstrated that FAM122A is essential for maintaining the growth of hepatocellular carcinoma cells, in which we unexpectedly found that FAM122A deletion increases γH2AX protein level, suggesting that FAM122A may participate in the regulation of DNA homeostasis or stability. In this study, we continued to investigate the potential role of FAM122A in DNA damage and/or repair.
View Article and Find Full Text PDFFAM122A is a highly conserved housekeeping gene, but its physiological and pathophysiological roles remain greatly elusive. Based on the fact that FAM122A is highly expressed in human CD71 early erythroid cells, herein we report that FAM122A is downregulated during erythroid differentiation, while its overexpression significantly inhibits erythrocytic differentiation in primary human hematopoietic progenitor cells and erythroleukemia cells. Mechanistically, FAM122A directly interacts with the C-terminal zinc finger domain of GATA1, a critical transcriptional factor for erythropoiesis, and reduces GATA1 chromatin occupancy on the promoters of its target genes, thus resulting in the decrease of GATA1 transcriptional activity.
View Article and Find Full Text PDFFAM122A is a highly conserved protein in mammals, however its function is still largely unknown so far. In this study, we investigated the potential role of FAM122A in hepatocellular carcinoma (HCC). By analyzing HCC patient cohorts from RNA sequencing datasets, we found the expression level of FAM122A mRNA is significantly upregulated in HCC patients.
View Article and Find Full Text PDFLong noncoding RNA HULC is identified and highly expressed in hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) is a key driver of liver cancer. In the present study, we found that HULC remarkably elevated the levels of HBeAg, HBsAg, HBcAg, pgRNA, HBx, HBV DNA and covalently closed circular DNA (cccDNA), which activated the HBV replication in HBV-expressing hepatoma cells or de novo HBV-infected cell lines (PHH, HepG2-NTCP and dHepaRG).
View Article and Find Full Text PDF