Publications by authors named "Yinon Ben-Neriah"

Background And Aims: RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy.

View Article and Find Full Text PDF

BTX-A51, a first-in-class oral small molecule inhibitor of casein kinase 1α (CK1α) and cyclin dependent kinase (CDK) 7 and 9, induces apoptosis of leukemic cells by activating p53 and inhibiting expression of . Here, we report on the results of the phase 1 clinical trial of BTX-A51 in patients with relapsed or refractory AML and MDS. Thirty-one patients were enrolled into 8 dose-escalation cohorts at BTX-A51 doses ranging from 1mg to 42mg dosed three days/week for 21 or 28 days out a 28-day cycle.

View Article and Find Full Text PDF
Article Synopsis
  • - The proteasome, critical in degrading unwanted proteins, shifts between the nucleus and cytoplasm depending on amino acid availability, particularly under starvation conditions, which affects protein synthesis.
  • - The presence of three aromatic amino acids (Tyr, Trp, Phe) can inhibit the proteasome's movement to the cytoplasm and trigger cell death, while their higher concentrations in healthy cells can disrupt key stress signaling pathways.
  • - Using the aromatic amino acids has shown potential for cancer therapy by sequestering the proteasome in the nucleus, inhibiting tumor growth, and altering various cell processes related to proliferation and death, suggesting Sestrin3's significant role in this mechanism.
View Article and Find Full Text PDF

Driver mutations are considered the cornerstone of cancer initiation. They are defined as mutations that convey a competitive fitness advantage, and hence, their mutation frequency in premalignant tissue is expected to exceed the basal mutation rate. In old terms, that translates to "the survival of the fittest" and implies that a selective process underlies the frequency of cancer driver mutations.

View Article and Find Full Text PDF

It is still not fully understood how genetic haploinsufficiency in del(5q) myelodysplastic syndrome (MDS) contributes to malignant transformation of hematopoietic stem cells. We asked how compound haploinsufficiency for Csnk1a1 and Egr1 in the common deleted region on chromosome 5 affects hematopoietic stem cells. Additionally, Trp53 was disrupted as the most frequently comutated gene in del(5q) MDS using CRISPR/Cas9 editing in hematopoietic progenitors of wild-type (WT), Csnk1a1-/+, Egr1-/+, Csnk1a1/Egr1-/+ mice.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a highly aggressive disease with high relapse and mortality rates. Recent years have shown a surge in novel therapeutic development for AML, both in clinical and preclinical stages. These developments include targeted therapies based on AML-specific molecular signatures as well as more general immune modulation and vaccination studies.

View Article and Find Full Text PDF

Somatic mutations have traditionally been associated with cancer, yet more recently, it was realized that they also appear in nontransformed cells beginning in early life. Remarkably, some of these mutations, commonly viewed as cancer driver mutations, are widely spread among cells of noncancerous tissues, sometimes affecting the majority of the tissue cells. This spreading process intensifies upon aging or exposure to extrinsic insults, such as UV irradiation, inhaling smoke, and inflammatory cues.

View Article and Find Full Text PDF

Somatic mutations in p53, which inactivate the tumour-suppressor function of p53 and often confer oncogenic gain-of-function properties, are very common in cancer. Here we studied the effects of hotspot gain-of-function mutations in Trp53 (the gene that encodes p53 in mice) in mouse models of WNT-driven intestinal cancer caused by Csnk1a1 deletion or Apc mutation. Cancer in these models is known to be facilitated by loss of p53.

View Article and Find Full Text PDF

The substantial availability of hypoxia-inducible factor 1 (HIF-1) for pathophysiological states, such as malignancies and ischemia, is primarily regulated post-translationally through the ubiquitin proteolytic system. The balance between degradation and stabilization of HIF-1α protein is determined by specific E3 ligases. In our search for new E3 ligases that might affect HIF-1α protein expression, we studied the effects of beta-transducin repeat-containing protein (β-TrCP) on the hypoxic pathway in cancer cells.

View Article and Find Full Text PDF

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition.

View Article and Find Full Text PDF

The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ.

View Article and Find Full Text PDF

Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by ) in skin physiology, we crossed mice harboring floxed with mice expressing K14-Cre-ER to generate mice in which tamoxifen induces the deletion of exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after ablation.

View Article and Find Full Text PDF

Parainflammation is a unique variant of inflammation, characterized by epithelial-autonomous activation of inflammatory response. Parainflammation has been shown to strongly promote mouse gut tumorigenesis upon p53 loss. In a recent study, we explored the prevalence of parainflammation in human cancer and determined its relationship to certain molecular and clinical parameters affecting treatment and prognosis.

View Article and Find Full Text PDF

SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection.

View Article and Find Full Text PDF

Background: Chronic inflammation has been recognized as one of the hallmarks of cancer. We recently showed that parainflammation, a unique variant of inflammation between homeostasis and chronic inflammation, strongly promotes mouse gut tumorigenesis upon p53 loss. Here we explore the prevalence of parainflammation in human cancer and determine its relationship to certain molecular and clinical parameters affecting treatment and prognosis.

View Article and Find Full Text PDF

Inflammation is emerging as one of the hallmarks of cancer, yet its role in most tumors remains unclear. Whereas a minority of solid tumors are associated with overt inflammation, long-term treatment with non-steroidal anti-inflammatory drugs is remarkably effective in reducing cancer rate and death. This indicates that inflammation might have many as-yet-unrecognized facets, among which an indolent course might be far more prevalent than previously appreciated.

View Article and Find Full Text PDF

Wnt pathway-driven proliferation and renewal of the intestinal epithelium must be tightly controlled to prevent development of cancer and barrier dysfunction. Although type I interferons (IFN) produced in the gut under the influence of microbiota are known for their antiproliferative effects, the role of these cytokines in regulating intestinal epithelial cell renewal is largely unknown. Here we report a novel role for IFN in the context of intestinal knockout of casein kinase 1α (CK1α), which controls the ubiquitination and degradation of both β-catenin and the IFNAR1 chain of the IFN receptor.

View Article and Find Full Text PDF

Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency.

View Article and Find Full Text PDF

The microRNA (miRNA) landscape changes during the progression of cancer. We defined a metastasis-associated miRNA landscape using a systematic approach. We profiled and validated miRNA and mRNA expression in a unique series of human colorectal metastasis tissues together with their matched primary tumors and corresponding normal tissues.

View Article and Find Full Text PDF

Senescent cells, albeit not proliferating, are metabolically and transcriptionally active, thereby capable of affecting their microenvironment, notably via the production of inflammatory mediators. These mediators maintain and propagate the senescence process to neighboring cells, and then recruit immune cells for clearing senescent cells. Among the inflammatory cues are molecules with pronounced tumor-controlling properties, both growth and invasion factors and inhibitory factors, working directly or via recruited immune cells.

View Article and Find Full Text PDF

In contrast to common genomic amplifications that support cancer cell growth by rewiring intracellular signaling, VEGFA amplification drives tumor cell proliferation via the tumor microenvironment. VEGFA amplification is present in a subset of mouse and human hepatocellular carcinomas (HCCs) that appear to be particularly sensitive to sorafenib treatment, indicating its potential value as a biomarker for HCC treatment.

View Article and Find Full Text PDF

The inflamed tumor microenvironment plays a critical role in tumorigenesis. However, the mechanisms through which immune cells, particularly macrophages, promote tumorigenesis have only been partially elucidated, and the full scope of signaling pathways supplying macrophages with protumorigenic phenotypes still remain largely unknown. Here we report that germ-line absence of c-Jun N-terminal phosphorylation at serines 63 and 73 impedes inflammation-associated hepatocarcinogenesis, yet deleting c-Jun only in hepatocytes does not inhibit hepatocellular carcinoma (HCC) formation.

View Article and Find Full Text PDF

Colorectal cancer (CRC) initiation and growth is often attributed to stem cells, yet little is known about the regulation of these cells. We show here that a subpopulation of Prox1-transcription-factor-expressing cells have stem cell activity in intestinal adenomas, but not in the normal intestine. Using in vivo models and 3D ex vivo organoid cultures of mouse adenomas and human CRC, we found that Prox1 deletion reduced the number of stem cells and cell proliferation and decreased intestinal tumor growth via induction of annexin A1 and reduction of the actin-binding protein filamin A, which has been implicated as a prognostic marker in CRC.

View Article and Find Full Text PDF

In the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis.

View Article and Find Full Text PDF