ACS Appl Mater Interfaces
October 2024
The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.
View Article and Find Full Text PDFInserting an insulating layer between the charge transport layer (CTL) and quantum dot emitting layer (QDL) is widely used in improving the performance of quantum dot light-emitting diodes (QLEDs). However, the additional layer inevitably leads to energy loss and joule heat. Herein, a monolayer silane coupling agent is used to modify the said interfaces via the self-limiting adsorption effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
Interfacial quality of functional layers plays an important role in the carrier transport of sandwich-structured devices. Although the suppression of interface states is crucial to the overall device performance, our understanding on their formation and annihilation mechanism via direct characterization is still quite limited. Here, we present a thorough study on the interface states present in the electron transport layer (ETL) of blue quantum dot (QD) light-emitting diodes (QLEDs).
View Article and Find Full Text PDF