Publications by authors named "Yinka Adesanya"

The presence of lignocellulose-derived microbial inhibitory compounds (LDMICs) in lignocellulosic biomass (LB) hydrolysates is a barrier to efficient conversion of LB hydrolysates to fuels and chemicals by fermenting microorganisms. Results from this study provide convincing evidence regarding the effectiveness of metabolically engineered NCIMB 8052 for the fermentation of LB-derived hydrolysates to acetone-butanol-ethanol (ABE). The engineered microbial strain (_SDR) was produced by the integration of an additional copy of a short-chain dehydrogenase/reductase (SDR) gene (3904) into the chromosome of NCIMB 8052 wildtype, where it is controlled by the constitutive thiolase promoter.

View Article and Find Full Text PDF

A process engineering strategy was investigated towards developing a viable scheme for effective conversion of hydrothermolysis pretreated non-detoxified switchgrass hydrolysates (SH) to acetone butanol ethanol (ABE) using a metabolically engineered strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii_AKR. The engineered strain was modified by homologous integration into the chromosome and constitutive expression of Cbei_3974, which encodes an aldo-keto reductase.

View Article and Find Full Text PDF

Biochar can be an inexpensive pH buffer and source of mineral and trace metal nutrients in acetone-butanol-ethanol (ABE) fermentation. This study evaluated the feasibility of replacing expensive 4-morpholineethanesulfonic acid (MES) P2 buffer and mineral nutrients with biochar made from switchgrass (SGBC), forage sorghum (FSBC), redcedar (RCBC) and poultry litter (PLBC) for ABE fermentation. Fermentations using Clostridium beijerinckii ATCC 51743 in glucose and non-detoxified switchgrass hydrolysate media were performed at 35 °C in 250 mL bottles for 72 h.

View Article and Find Full Text PDF