The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development.
View Article and Find Full Text PDFIntroduction: Azvudine and nirmatrelvir-ritonavir are more extensively used to treat COVID-19 in China due to their earlier approval by the National Medical Products Administration. However, there has been a scarcity of research directly comparing the clinical outcomes between azvudine and nirmatrelvir-ritonavir till now. We aimed to make a head-to-head comparison of the efficacy and safety of azvudine or nirmatrelvir-ritonavir in hospitalized patients with COVID-19 in China.
View Article and Find Full Text PDFCirculating microRNAs (miRNA) can serve as key biomarkers for early diagnose of cholangiocarcinoma. Herein, an assay that uses circulating miRNA to trigger strand displacement amplification (SDA) and a CRISPR-Cas14a system to report the SDA process has been developed. In the proposed method, SDA directly amplifies miRNAs without reverse transcription.
View Article and Find Full Text PDFCommon buckwheat ( M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers.
View Article and Find Full Text PDFThe halal food market is globally growing along with the increased risk of adulteration. We proposed an amplification-free and mix-to-read CRISPR-Cas12-based nucleic acid analytical strategy allowing rapid identification and analysis of pork components, thus enriching the toolbox for ensuring halal food authenticity. We designed and optimized guide RNA (gRNA) targeting the pork cytochrome b (Cyt b) gene.
View Article and Find Full Text PDFWRKY transcription factors (TFs) play a vital part in coping with different stresses. In this study, was isolated from . The gene encodes a 325 amino acid protein, belonging to the group II WRKY family, and contains one typical WRKY domain (WRKYGQK) and a zinc finger motif (C-X4-5-C-X22-23-H-X1-H).
View Article and Find Full Text PDFFront Plant Sci
September 2017
High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF) family is highly associated with a number of processes of abiotic stress responses. We isolated from , and a protein encoded by this new gene contains two highly conserved WRKY domains and two CH zinc-finger motifs.
View Article and Find Full Text PDFWRKY transcription factors play important roles in plant growth development, resistance and substance metabolism regulation. However, the exact function of the response to salt stress in plants with specific WRKY transcription factors remains unclear. In this research, we isolated a new WRKY transcription factor DgWRKY5 from chrysanthemum.
View Article and Find Full Text PDFPhormium tenax is a kind of drought resistant garden plant with its rich and colorful leaves. To clarify the molecular mechanism of drought resistance in Phormium tenax, transcriptome was sequenced by the Illumina sequencing technology under normal and drought stress, respectively. A large number of contigs, transcripts and unigenes were obtained.
View Article and Find Full Text PDFDgNAC1, a transcription factor of chrysanthemum, was functionally verified to confer salt stress responses by regulating stress-responsive genes. NAC transcription factors play effective roles in resistance to different abiotic stresses, and overexpressions of NAC TFs in Arabidopsis have been proved to be conducive in improving salinity tolerance. However, functions of NAC genes in chrysanthemum continue to be poorly understood.
View Article and Find Full Text PDFSalt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat) of leaves.
View Article and Find Full Text PDF