Monitoring lithium ions (Li) in lithium-rich brine (LrB) is critical for metal recovery, yet challenges such as high ionic strength and gypsum-induced surface deterioration hinder the performance of potentiometric ion-selective electrode (ISE) sensors. This study advances the functionality of Li ISE sensors and enables continuous monitoring of Li concentration in LrB by introducing apolyelectrolyte multilayer (PEM) of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) that serves as an antigypsum scaling material to minimize nucleation on the sensor surface. With 5.
View Article and Find Full Text PDFMost soil quality measurements have been limited to laboratory-based methods that suffer from time delay, high cost, intensive labor requirement, discrete data collection, and tedious sample pretreatment. Real-time continuous soil monitoring (RTCSM) possesses a great potential to revolutionize field measurements by providing first-hand information for continuously tracking variations of heterogeneous soil parameters and diverse pollutants in a timely manner and thus enable constant updates essential for system control and decision-making. Through a systematic literature search and comprehensive analysis of state-of-the-art RTCSM technologies, extensive discussion of their vital hurdles, and sharing of our future perspectives, this critical review bridges the knowledge gap of spatiotemporal uninterrupted soil monitoring and soil management execution.
View Article and Find Full Text PDFAccurate and continuous monitoring of soil nitrogen is critical for determining its fate and providing early warning for swift soil nutrient management. However, the accuracy of existing electrochemical sensors is hurdled by the immobility of targeted ions, ion adsorption to soil particles, and sensor reading noise and drifting over time. In this study, polyacrylamide hydrogel with a thickness of 0.
View Article and Find Full Text PDFLead (Pb) contaminants in wastewater have inhibited microbial activities and thus exerted high energy consumption in wastewater treatment plants (WWTPs). Current Pb monitoring has been conducted ex situ and off line, unable to affect real-time proactive control and operation. This study targets the crucial challenge of better and faster Pb monitoring by developing novel mm-sized screen-printed solid-state ion-selective membrane (S-ISM) Pb sensors with low-cost, high accuracy and long-term durability and that enable real-time in situ monitoring of Pb(II) ion contamination down to low concentrations (15 ppb-960 ppb) in wastewater.
View Article and Find Full Text PDFLong-term accurate and continuous monitoring of nitrate (NO) concentration in wastewater and groundwater is critical for determining treatment efficiency and tracking contaminant transport. Current nitrate monitoring technologies, including colorimetric, chromatographic, biometric, and electrochemical sensors, are not feasible for continuous monitoring. This study addressed this challenge by modifying NO solid-state ion-selective electrodes (S-ISEs) with poly(tetrafluoroethylene) (PTFE, (CF)).
View Article and Find Full Text PDFHigh energy consumption is a critical problem for wastewater treatment systems currently monitored using conventional "single point" probes and operated with manual or automatic open-loop control strategies, exhibiting significant time lag. This challenge is addressed in this study by profiling the variation of three critical water quality parameters (conductivity, temperature and pH) along the depth of a reactor at high spatiotemporal resolution in a real-time mode using flat thin milli-electrode array (MEA) sensors. The profiling accurately captured the heterogeneous status of the reactor under transient shocks (conductivity and pH) and slow lingering shock (temperature), providing an effective dataset to optimize the chemical dosage and energy requirement of wastewater treatment systems.
View Article and Find Full Text PDFNovel flexible thin mm-sized resistance-typed sensor film (MRSF) fabricated using ink-jet printing technology (IPT) was developed in this study to monitor water flow rate in pipelines in real time mode. The mechanism of MRSF is that the mm-sized interdigitated electrodes made by printing silver nanoparticles on an elastic polyimide film bend under different flow rates, leading to variation of the resistance of the sensor at different degrees of curvature. Continuous flow tests showed that MRSF possessed a high accuracy (0.
View Article and Find Full Text PDFReal-time, in situ accurate monitoring of nitrogen contaminants in wastewater over a long-term period is critical for swift feedback control, enhanced nitrogen removal efficiency, and reduced energy consumption of wastewater treatment processes. Existing nitrogen sensors suffer from high cost, low stability, and short life times, posing hurdles for their mass deployment to capture a complete picture within heterogeneous systems. Tackling this challenge, this study presents solid-state ion-selective membrane (S-ISM) nitrogen sensors for ammonium (NH) and nitrate (NO) in wastewater that were coupled to a wireless data transmission gateway for real-time remote data access.
View Article and Find Full Text PDF