Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to deformities and disabilities in patients. Conventional treatment focuses on delaying progression; therefore, new treatments are necessary. The present study reported a novel ionic liquid transdermal platform for efficient RA treatment, and the underlying mechanism was elucidated using FTIR, H-NMR, Raman, XPS, and molecular simulations.
View Article and Find Full Text PDFPurpose: Traditional eye drops exhibit a modest bioavailability ranging from 1 to 5%, necessitating recurrent application. Thus, a contact lens-based drug delivery system presents substantial benefits. Nonetheless, pharmaceutical agents exhibiting poor solubility may compromise the quintessential characteristics of contact lenses and are, consequently, deemed unsuitable for incorporation.
View Article and Find Full Text PDFCurrently, the marketed ophthalmic preparations of pranoprofen (PF) are mainly eye drops, but due to the special clearance mechanism of the eye and corneal reflex, the contact time between the drug and the focal site is short, most of the drug is lost, and the bioavailability is less than 5%. In the present study, an in situ gel eye drop containing no bacteriostatic agent and sensitive to temperature and ions was designed for delivery of PF. It was demonstrated to meet the criteria for ophthalmic preparations by characterization such as appearance content sterility.
View Article and Find Full Text PDFThe high level of reactive oxygen species (ROS) at the tumor site has been widely used in the tumor targeted delivery. However, the ROS stimulus-responsive vector itself is also a ROS consumer, and the consumption of endogenous ROS may not be sufficient to maintain sustained drug release. In this study, we designed and synthesized ROS/pH dual-sensitive polymer micelles for the co-delivery of emodin (EMD) and chlorambucil (CLB).
View Article and Find Full Text PDF