Wound bacterial infections can significantly delay the healing process and even lead to fetal sepsis. There is a need for multifunctional dressings that possess antibacterial property, tissue adhesive property, self-healing capability, and biocompatibility to effectively treat bacteria-infected wound. In this study, we report a dual dynamically crosslinked hydrogel, OHA-PBA/PVA/Gen, which incorporates the antibiotic gentamicin (Gen) as a dynamic crosslinker.
View Article and Find Full Text PDFEthnopharmacological Relevance: jinkui Shenqi Pill (JSP) is a classic traditional Chinese medicine used to treat "Kidney Yang Deficiency" disease. Previous studies indicate a protective effect of JSP on apoptosis in mouse neurons.
Aim Of The Study: This research, combining network pharmacology with in vivo experiments, explores the mechanism of JSP in preventing neural tube defects (NTDs) in mice.
Background: Unequal access to primary healthcare (PHC) has become a critical issue in global health inequalities, requiring governments to implement policies tailored to communities' needs and abilities. However, the place-based facility dimension of PHCs is oversimplified in current healthcare literature, and formulating the equity-oriented PHC spatial planning remains challenging without understanding the multiple impacts of community socio-spatial dynamics, particularly in remote areas. This study aims to push the boundary of PHC studies one step further by presenting a nuanced and dynamic understanding of the impact of community environments on the uneven primary healthcare supply.
View Article and Find Full Text PDFThe lack of bacterial-targeting function in antibiotics and their prophylactic usage have caused overuse of antibiotics, which lead to antibiotic resistance and inevitable long-term toxicity. To overcome these issues, we develop neutrophil-bacterial hybrid cell membrane vesicle (HMV)-coated biofunctional lipid nanoparticles (LNP@HMVs), which are designed to transport antibiotics specifically to bacterial cells at the infection site for the effective treatment and prophylaxis of bacterial infection. The dual targeting ability of HMVs to inflammatory vascular endothelial cells and homologous Gram-negative bacterial cells results in targeted accumulation of LNP@HMVs in the site of infections.
View Article and Find Full Text PDFAntibiotic colistin is the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Emergence of colistin resistance in microbes is a critical challenge. Herein, curcumin is discovered, for the first time, to reverse the resistance phenotype of colistin-resistant bacteria via a checkerboard assay.
View Article and Find Full Text PDFBackground: P. aeruginosa, a highly virulent Gram-negative bacterium, can cause severe nosocomial infections, and it has developed resistance against most antibiotics. New therapeutic strategies are urgently needed to treat such bacterial infection and reduce its toxicity caused by endotoxin (lipopolysaccharide, LPS).
View Article and Find Full Text PDFAntibacterial hydrogels, particularly antibiotic-loaded hydrogels, are promising wound dressing materials for treatment of bacteria-infected wound. However, it is challenging to achieve sustained release of antibiotics from hydrogels through physical encapsulation of the antibiotics. Herein, an interpenetrating polymer network P(AA-co-HEMA) hydrogel is reported with double crosslinking formed by free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA), while using the antibiotic gentamicin (Gen) as the dynamic physical crosslinker.
View Article and Find Full Text PDFAntibiotic-free antimicrobial strategies are urgently needed to address the rapid evolution of antimicrobial resistance and transmission of multidrug-resistance bacterial infections. Herein, we fabricated polydopamine-coated porous magnetic nanoparticles (pMNPs@PDA) for effective separation and photothermal killing of methicillin-resistant (MRSA). Taking advantage of the excellent bacteria-affinitive property of polydopamine, the nanoparticles were anchored on the surface of bacteria, permitting rapid and efficient MRSA capture and separation with over 99% removal via the application of a magnetic field in 30 min.
View Article and Find Full Text PDFBacterial membrane vesicles (MVs) are particles secreted by bacteria with diameter of 20-400 nm. The pathogen-associated molecular patterns (PAMPs) present on the surface of MVs are capable of activating human immune system, leading to non-specific immune response and specific immune response. Due to the immunostimulatory properties and proteoliposome nanostructures, MVs have been increasingly explored as vaccines or delivery systems for the prevention and treatment of bacterial infections.
View Article and Find Full Text PDFObjective: To observe the effect of perpendicular and subcutaneous transverse needling at "Sanyinjiao" (SP6) on visceral pain behavior, arginine vasopressin (AVP) content in the serum, uterine tissues, spinal cord and hypothalamus and expression of AVP receptors AVPR1A and AVPR1B in the uterine tissues, spinal cord and hypothalamus in cold-stasis (stasis due to pathogenic cold) type dysmenorrhea rats, so as to explore their mechanisms underlying pain relief.
Methods: Forty female SD rats were randomly divided into blank control, model, perpendicular needling and transverse needling groups, with 10 rats in each group. The cold-stasis dysmenorrhea rat model was established by exposure in a freezer (-25 ℃) for 4 h, once daily for 5 days, and subcutaneous injection of estradiol benzoate (once daily for 10 days) and intra-abdominal injection of oxytocin injection (once).
Cell membrane-engineered nanoparticles, integrating the functions of the natural cell membrane and synthetic nanoparticles, are of great interest in various biomedical applications. In particular, cell membrane-engineered hybrid soft nanocomposites (CMHSNCs) with the core of degradable macromolecules or biofunctional molecules, and the shell of various types of functional cell membranes exhibited superior biocompatibility, prolonged circulation and enhanced targeting. They have been explored for cancer therapy, bioimaging, detoxification, anti-virulence and thrombolysis.
View Article and Find Full Text PDFWaggle needling, a classical anti-spastic needling technique characterized by combination of acupuncture with joint movement, has gained increasing popularity of spasticity treatment in China. This study was designed to compare the anti-spastic effect of waggle needling to the routine needling and to explore its underlying mechanism. We established post-stroke spasticity model based on ischemia stroke operation (middle cerebral artery occlusion).
View Article and Find Full Text PDFBackground: Acupuncture has been widely used to treat primary dysmenorrhea (PD) with satisfactory outcomes. Sanyinjiao (SP6) is the most commonly used acupoint for PD. Different needling techniques may influence the effect of SP6, and its underlying mechanism needs to be explored.
View Article and Find Full Text PDFZhongguo Zhen Jiu
December 2019
The filiform needling technique is an important factor affecting the acupoint effect, and it is the key to option the needling technique corresponding to the disease so that the clinical curative effect can be improved. This paper systematically reviews the application of kinetic needling in the treatment of spasm, in order to provide some theoretical basis for the optimal acupuncture regimen of spasm. By summarizing and analyzing the similarities and differences of acupoint selection principle, needling characteristics, stimulation range, stimulation amount and indications in the treatment of spasm, it is found that kinetic needling emphasizes the effective combination of acupuncture and kinesis, which is an effective mean of treating spasm.
View Article and Find Full Text PDF