A radical hydro-fluorosulfonylation of propargyl alcohols with FSOCl is presented based on the photoactivation of the electron donor-acceptor (EDA) complex. The reaction avoids the requirement for photocatalysts, bases, hydrogen donor reagents, any other additives, and harsh conditions, enabling the facile synthesis of various functionalized γ-hydroxy ()-alkenylsulfonyl fluorides. These multifunctional sulfonyl fluorides can be further diversified, providing access to various privileged molecules of biological relevance.
View Article and Find Full Text PDFDue to limited monitoring stations along rivers, it is difficult to trace the specific locations of high pollution areas along the whole river by traditionally in situ measurement. High-spatiotemporal-resolution Sentinel-2 satellite images make it possible to routinely monitor and trace the spatial distributions of river water quality if reliable retrieval algorithms are available. This study took seven major rivers (Qiantang River (QTR), Cao'e River (CEJ), Yongjiang River (YJ), Jiaojiang River (JJ), Oujiang River (OJ), Feiyun River (FYR), and Aojiang River (AJ)) in Zhejiang Province, China, as examples to illustrate the spatial traceability of river water quality parameters (permanganate index (COD), total phosphorus (TP), and total nitrogen (TN)) from Sentinel-2 satellite images.
View Article and Find Full Text PDFIlex pubescens Hook. et Arn is a medicinal plant of the Ilex family that is mainly used for the treatment of cardiovascular diseases. Its main medicinal ingredients are total triterpenoid saponins (IPTS).
View Article and Find Full Text PDFRadical fluorosulfonylation is emerging as an appealing approach for the synthesis of sulfonyl fluorides, which have widespread applications in many fields, in particular in the context of chemical biology and drug development. Here, we report the first investigation of FSO radical generation under electrochemical conditions, and the establishment of a new and facile approach for the synthesis of β-keto sulfonyl fluorides via oxo-fluorosulfonylation of alkynes with sulfuryl chlorofluoride as the radical precursor and air as the oxidant. This electrochemical protocol is amenable to access two different products (β-keto sulfonyl fluorides or α-chloro-β-keto sulfonyl fluorides) with the same reactants.
View Article and Find Full Text PDFThe dynamic N-methyladenosine (mA) modification of mRNA plays a role in regulating gene expression and determining cell fate. However, the functions of mA mRNA modification in bladder cancer stem cells (BCSCs) have not been described. Here, we show that global RNA mA abundance and the expression of mA-forming enzyme METTL3 are higher in BCSCs than those in non-CSCs of bladder cancer (BCa) cells.
View Article and Find Full Text PDFLow dose treatment with the DNA methylation inhibitor decitabine has been shown to be applicable for the management of certain types of cancer. However, its antitumor effect and mechanisms are context dependent and its activity has never been systematically studied in bladder cancer treatment. We used mouse models, cultured cell lines and patient-derived xenografts to demonstrate that low dose decitabine treatment remarkably enhanced the effects of cisplatin and gemcitabine on basal-like bladder cancer both in vivo and in vitro.
View Article and Find Full Text PDFN-methyladenosine (m6A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in bladder cancer (BCa) remain elusive. Here, we discovered that methyltransferase-like 3 (METTL3), a major RNA N-adenosine methyltransferase, was significantly up-regulated in human BCa.
View Article and Find Full Text PDFIt has been reported that functionally distinct cancer stem cells (CSCs) exist in human bladder cancer (BCa). Here, we found that Sox2, a transcription factor that is well characterized as a marker for stem cells, is upregulated in both mouse and human BCa. Sox2 expression is absent in normal urothelial cells, but it begins to be expressed in pre-neoplastic bladder tumors and continues to be expressed in invasive mouse BCa.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2017
As the development of the new generation of sequencing (NGS) technologies, it has been used for standard sequencing applications more and more popular. We used NGS technologies to resequence the complete mitochondrial genome of Japanese quail. The complete mitochondrial genome of Japanese quail is a 16,668 bp circular molecule, which contains 37 typical mitochondrial genes (13 protein-coding genes, 2 rRNAs, and 22 tRNAs) and a 1156 bp D-loop.
View Article and Find Full Text PDFMitochondrial DNA B Resour
September 2016
The complete mitochondrial genome of is a 15,547 bp circular molecule, which contains 37 typical mitochondrial genes (13 protein-coding genes, 2 rRNAs and 22 tRNAs) and a 854 bp D-loop. Its gene arrangement pattern is identical with typical other cockroaches. All protein-coding genes start with an ATG codon except COI, ND3, ND5, ND4, ND4L ND6 and ND1.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome (PRRS) is one of the most devastating diseases for the pig industry. Our goal was to identify microRNAs involved in the host immune response to PRRS. We generated microRNA expression profiles of lung tissues from Tongcheng or Landrace pigs infected with a highly pathogenic PRRS virus (PRRSV) at 3, 5, 7 dpi (day post infection) and control individuals from these two breeds.
View Article and Find Full Text PDFThe phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport. However, the involvement of the PI3K pathway in the regulation of mitotic cell death remains unclear. In this study, we treated HeLa cells with the PI3K inhibitors, 3-methyladenine (3-MA, as well as a widely used autophagy inhibitor) and wortmannin to examine their effects on cell fates using live cell imaging.
View Article and Find Full Text PDFMammalian oocytes undergo an asymmetrical first meiotic division, extruding half of their chromosomes in a small polar body to preserve maternal resources for embryonic development. To divide asymmetrically, mammalian oocytes relocate chromosomes from the center of the cell to the cortex, but little is known about the underlying mechanisms. Here, we show that upon the elevation of intracellular cAMP level, mouse oocytes produced two daughter cells with similar sizes.
View Article and Find Full Text PDFBackground: p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy.
Principal Findings: Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors.
Micronuclei are closely related to DNA damage. The presence of micronuclei in mammalian cells is a common phenomenon post ionizing radiation. The level of micronucleation in tumor cells has been used to predict prognosis after radiotherapy in many cancers.
View Article and Find Full Text PDFAlthough micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells.
View Article and Find Full Text PDF