Publications by authors named "Yingya Li"

Deep learning (DL) has substantially enhanced natural language processing (NLP) in healthcare research. However, the increasing complexity of DL-based NLP necessitates transparent model interpretability, or at least explainability, for reliable decision-making. This work presents a thorough scoping review of explainable and interpretable DL in healthcare NLP.

View Article and Find Full Text PDF

Objective: Large language models (LLMs) have shown impressive ability in biomedical question-answering, but have not been adequately investigated for more specific biomedical applications. This study investigates ChatGPT family of models (GPT-3.5, GPT-4) in biomedical tasks beyond question-answering.

View Article and Find Full Text PDF

Background: Assisted reproductive technologies (ARTs), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are thought to destabilize genomic imprints. Previous studies examining the association between ART and aberrant DNA methylation have been inconclusive.

Method: The DNA methylation status of and was compared between newborns conceived through ART and those conceived naturally to evaluate the safety of ART.

View Article and Find Full Text PDF

Here we report a case of heterotopic cornual pregnancy after fertilization who was diagnosed at 6 weeks after frozen embryos transfer. The heterotopic pregnancy was successfully terminated by transvaginal ultrasound-guided selective fetal reduction. At 38+1 weeks, she underwent a cesarean section and delivered a healthy 3300 g male infant with Apgar score of 10-10' evaluated at 1 min and 5 min.

View Article and Find Full Text PDF

The acrosome reaction is a prerequisite for fertilization, and its signaling pathway has been investigated for decades. Regardless of the type of inducers present, the acrosome reaction is ultimately mediated by the elevation of cytosolic calcium. Inositol 1,4,5-trisphosphate-gated calcium channels are important components of the acrosome reaction signaling pathway and have been confirmed by several researchers.

View Article and Find Full Text PDF

Background: It has been reported that cell inflammation pathways contribute to the development of prostaglandin E2 (PGE2)-inhibitor of DNA-binding protein-1 (ID1)-dependent radio-resistance in glioblastoma. Here, we proposed that inhibiting delta-6-desaturase (D6D) could block arachidonic acid synthesis and PGE2 production, thereby reversing PGE2-ID1-dependent radioresistance in glioblastoma cells and xenograft tumor models.

Materials And Methods: Two glioblastoma cell lines, namely, U-87 MG and LN-229, were used for the in vitro study.

View Article and Find Full Text PDF

Proanthocyanidins (PAs) belong to the condensed tannin subfamily of natural flavonoids. Recent studies have shown that the main bioactive compounds of Pinus massoniana bark extract (PMBE) are PAs, especially the proanthocyanidins B series, which play important roles in cell cycle arrest, apoptosis induction and migration inhibition of cancer cells in vivo and in vitro. PA-Bs are mixtures of oligomers and polymers composed of flavan-3-ol, and the relationship between their structure and corresponding biomedical potentials is summarized in this paper.

View Article and Find Full Text PDF

Proanthocyanidins are among the most abundant constituents in pine bark extracts (PBEs). This review summarizes medical research on PBEs from Pinus pinaster, Pinus radiata, Pinus massoniana, and other less well characterized species. The precise mechanisms of the important physiologic functions of PBE components remain to be elucidated, but there is evidently great potential for the identification and development of novel antioxidant, anti-inflammatory, cardiovascular, neuroprotective, and anticancer medicines.

View Article and Find Full Text PDF

Traditional Chinese medicine (TCM) treatment is based on the traditional diagnose method to distinguish the TCM syndrome, not the disease. So there is a phenomenon in the relationship between TCM syndrome and disease, called Same TCM Syndrome for Different Diseases and Different TCM Syndrome for Same Disease. In this study, we demonstrated the molecular mechanisms of this phenomenon using the microarray samples of liver-gallbladder dampness-heat syndrome (LGDHS) and liver depression and spleen deficiency syndrome (LDSDS) in the chronic hepatitis B (CHB) and liver cirrhosis (LC).

View Article and Find Full Text PDF