Publications by authors named "Yingxia Cui"

Objective: To investigate the etiology, diagnosis and treatment of 45,X/46,XY mixed gonadal dysgenesis and the patients' clinical characteristics of conception, pregnancy and delivery, with purpose of improving the treatment and pregnancy management of the patients.

Methods: We retrospectively analyzed the clinical data on a pregnant patient with 45,X/46,XY mixed gonadal dysgenesis.

Results: Based on the findings of hypoplasia of secondary sexual characteristics, streak gonads, chromosome karyotype incompatibility with social sex, and chromosome aberration in the gonadal tissue, the patient was diagnosed with 45,X/46,XY mixed gonadal dysgenesis, received oocyte donation and intracytoplasmic sperm injection-embryo transfer (ICSI-ET), and achieved a live birth.

View Article and Find Full Text PDF

Alport syndrome (AS) is an inherited glomerular basement membrane (GBM) disease leading to end-stage renal disease (ESRD). X-linked AS (XLAS) is caused by pathogenic variants in the gene. Many pathogenic variants causing AS have been detected, but the genetic modifications and pathological alterations leading to ESRD have not been fully characterized.

View Article and Find Full Text PDF

X-linked Alport syndrome (XLAS) is a common hereditary nephropathy caused by COL4A5 gene mutations. To date, many splice site mutations have been described but few have been functionally analyzed to verify the exact splicing effects that contribute to disease pathogenesis. Here, we accidentally discovered 2 COL4A5 gene splicing mutations affecting the same residue (c.

View Article and Find Full Text PDF

Mutations in the COL4A5 gene result in X-linked Alport syndrome, homozygous or compound heterozygous mutations in COL4A3 or COL4A4 are responsible for autosomal recessive Alport syndrome, and heterozygous mutations in COL4A3 or COL4A4 cause autosomal dominant Alport syndrome or benign familial hematuria. Recently, the existence of a digenic inheritance in Alport syndrome has been demonstrated. We here report heterozygous COL4A3 and COL4A4 digenic mutations in cis responsible for benign familial hematuria.

View Article and Find Full Text PDF

Thin basement membrane nephropathy (TBMN), autosomal dominant Alport syndrome (ADAS), and focal segmental glomerulosclerosis (FSGS) are kidney diseases that differ in clinical diagnosis, treatment, and prognosis. Nevertheless, they may result from the same causative genes. Here, we report 3 COL4A4 heterozygous mutations (p.

View Article and Find Full Text PDF

Aim: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease in humans and is caused by mutations in the PKD1 or PKD2 gene. ADPKD is heterogeneous with regard to locus and allele heterogeneity and phenotypic variability.

Methods: Using targeted capture associated with next generation sequencing (NGS), we performed a mutational analysis of Han Chinese patients with ADPKD from 62 unrelated families.

View Article and Find Full Text PDF

Protamine (PRM) plays important roles in the packaging of DNA within the sperm nucleus. To investigate the role of and transition protein 1 () polymorphisms in male infertility, 636 infertile men and 442 healthy individuals were recruited into this case-controlled study of the Chinese Han population, using MassARRAY technology to analyze genotypes. Our analysis showed that there were no significant differences between controls and infertile cases among the five single nucleotide polymorphisms identified in , and [rs737008 (G/A), rs2301365 (C/A), rs2070923 (C/A), rs1646022 (C/G) and rs62180545 (A/G)].

View Article and Find Full Text PDF

Background: Male infertility is a complex disorder caused by genetic, developmental, endocrine, or environmental factors as well as unknown etiology. Polymorphisms in the follicle stimulating hormone beta subunit (FSHB) (rs10835638, c.-211G > T) and follicle stimulating hormone receptor (FSHR) (rs1394205, c.

View Article and Find Full Text PDF

Alport syndrome (AS) is a clinically and genetically heterogeneous, progressive nephropathy caused by mutations in COL4A3, COL4A4, and COL4A5, which encode type IV collagen. The large sizes of these genes and the absence of mutation hot spots have complicated mutational analysis by routine polymerase chain reaction (PCR)-based approaches. Here, in order to design a rapid and effective method for the genetic diagnosis of AS, we developed a strategy by utilizing targeted capture associated with next-generation sequencing (NGS) to analyze COL4A3, COL4A4, and COL4A5 simultaneously in 20 AS patients.

View Article and Find Full Text PDF

αB-crystallin acts as an anti-apoptosis protein in human lens epithelial (HLE) cells. We recently identified a missense mutation in αB-crystallin that changes proline 20 to an arginine (P20R) in a Chinese family with autosomal dominant congenital posterior polar cataract. The impact of the P20R mutation on the anti-apoptosis function remains unclear.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS) is a neurodevelopmental disorder. AS patients concomitant with sSMC are rather rare events. It will provide more useful and proper information for genetic counseling to identify the sSMC origin.

View Article and Find Full Text PDF

The 46,XX male disorder of sex development (DSD) is rarely observed in humans. Patients with DSD are all male with testicular tissue differentiation. The mechanism of sex determination and differentiation remains to be elucidated.

View Article and Find Full Text PDF

Partial trisomy 9 is a common autosomal trisomy, which is characterized by non-specific psychomotor delay, mental retardation and moderately abnormal characteristic facial features. Generally, partial trisomy 9 leads to variable phenotypes depending on the size and position of the duplicated region. However, a precise genotype/phenotype map has not been determined.

View Article and Find Full Text PDF

Background: 46,XX testicular disorder of sex development is a rare genetic syndrome, characterized by a complete or partial mismatch between genetic sex and phenotypic sex, which results in infertility because of the absence of the azoospermia factor region in the long arm of Y chromosome.

Case Presentation: We report a case of a 14-year-old male with microorchidism and mild bilateral gynecomastia who referred to our hospital because of abnormal gender characteristics. The patient was treated for congenital scrotal type hypospadias at the age of 4 years.

View Article and Find Full Text PDF

Background: To identify the genetic defects and investigate the possible mechanism of cataract genesis in a five-generation family with autosomal dominant congenital posterior polar cataracts.

Methods: Clinical data were collected, and the lens phenotypes of the affected members in this family were recorded by slit lamp photography. Genomic DNA was isolated from peripheral blood using QIAamp DNA Blood Mini Kits.

View Article and Find Full Text PDF

Background: To review the possible mechanisms proposed to explain the etiology of 46, XX sex reversal by investigating the clinical characteristics and their relationships with chromosomal karyotype and the SRY(sex-determining region Y)gene.

Methods: Five untreated 46, XX patients with SRY-positive were referred for infertility. Clinical data were collected, and Karyotype analysis of G-banding in lymphocytes and Fluorescence in situ hybridization (FISH) were performed.

View Article and Find Full Text PDF

Background: Estrogen receptors play an important role in mediating estrogen action on target tissues, and the estrogen is relevant to male infertility. Single nucleotide polymorphisms (SNPs) in estrogen receptors may be associated with the risk of male infertility. A variety of case control studies have been published evaluating this association.

View Article and Find Full Text PDF

Background: Almost one-third of congenital cataracts are primarily autosomal dominant disorders, which are also called autosomal dominant congenital cataract, resulting in blindness and clouding of the lens. The purpose of this study was to identify the disease-causing mutation in a Chinese family affected by bilateral, autosomal dominant congenital cataract.

Methods: The detection of candidate gene mutation and the linkage analysis of microsatellite markers were performed for the known candidate genes.

View Article and Find Full Text PDF

Background: Ring chromosomes are often associated with spermatogenetic failure. However, the mechanism is poorly understood. We here reported a single man with severe oligospermia and a ring chromosome 4 with a microdeletion at 4p16.

View Article and Find Full Text PDF

Objective: Mutations in the type II collagen gene are associated with certain human disorders, collectively termed type II collagenopathies. They include Legg-Calvé-Perthes disease (LCPD) and avascular necrosis of the femoral head (ANFH). These two diseases are skeletal dysplasias, inherited in an autosomal dominant fashion, characterized by groin pain, dislocation of the hip and diminished joint mobility.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI), also known as brittle bone disease, characterized by multiplicative osteopsathyrosis, blue sclera, dentinogenesis imperfecta and mild audition, is a rare inherited connective tissue disease. There are seven types of OI, I to VII, among which type I-IV are relatively common and associated with type I collagen. Defects in type I collagen synthesis or structure are responsible for the majority of clinical OI cases since collagen is the major matrix protein of all connective tissues.

View Article and Find Full Text PDF

Reciprocal translocation is one of the most common structural chromosomal rearrangements in human beings; it is widely recognized to be associated with male infertility. This association is mainly based on the abnormal chromosome behavior of the translocated chromosomes and sex chromosomes during meiosis prophase I in reciprocal translocation carriers. However, the underlying mechanisms are not completely known.

View Article and Find Full Text PDF

Background: An ovotesticular disorder of sex development (OT-DSD) was rarely found in human. The mechanism causing such condition is poorly understood. We hereby reported a 11-year-old child with OT-DSD and a karyotype 46,XX/46,XY, a single maternal and double paternal genetic contribution to the patient.

View Article and Find Full Text PDF

Objective: Globozoospermia is mostly associated with homozygous deletion of the DPY19L2 gene. This study aimed to investigate the DPY19L2 gene mutation in a globozoospermia patient.

Methods: We observed the sperm histomorphology of a patient with globozoospermia using Wright-Giemsa's staining and transmission electron microscopy, detected the mutation of the DPY19L2 gene by PCR amplification and DNA sequencing, and compared the findings with the sequences issued in the Genbank.

View Article and Find Full Text PDF