In mammals, the neonatal heart can regenerate upon injury within a short time after birth, while adults lose this ability. Metabolic reprogramming has been demonstrated to be critical for cardiomyocyte proliferation in the neonatal heart. Here, we reveal that cardiac metabolic reprogramming could be regulated by altering global protein lactylation.
View Article and Find Full Text PDFBacterial ribonucleoprotein bodies (BR-bodies) are non-membrane-bound structures that facilitate mRNA decay by concentrating mRNA substrates with RNase E and the associated RNA degradosome machinery. However, the full complement of proteins enriched in BR-bodies has not been defined. Here, we define the protein components of BR-bodies through enrichment of the bodies followed by mass spectrometry-based proteomic analysis.
View Article and Find Full Text PDFMale fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis.
View Article and Find Full Text PDFThe phase behavior and chain conformational structure of biphasic polyzwitterion-polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH.
View Article and Find Full Text PDFPolyethylene oxide (PEO)-based polymers are commonly studied for use as a solid polymer electrolyte for rechargeable Li-ion batteries; however, simultaneously achieving sufficient mechanical integrity and ionic conductivity has been a challenge. To address this problem, a customized polymer architecture is demonstrated wherein PEO bottle-brush arms are hyperbranched into a star architecture and then functionalized with end-grafted, linear PEO chains. The hierarchical architecture is designed to minimize crystallinity and therefore enhance ion transport hyperbranching, while simultaneously addressing the need for mechanical integrity the grafting of long, PEO chains ( = 10,000).
View Article and Find Full Text PDFSpatial confinement has a great impact on the structures and dynamics of interfacial molecular and polymer liquid films. Most prior research has focused on confined liquids of fixed material compliance and often treated them in approximation to the "hard-sphere" interaction model. In this study, we microscopically investigate the structural dynamics of highly deformable poly(-isopropylacrylamide) (PNIPAM) microgels confined between two solid surfaces in comparison to that of nearly nondeformable microgels of the same chemistry.
View Article and Find Full Text PDFThe effect of net charge of zwitterionic polymers on the phase behavior and viscoelastic properties of hybrid polyampholyte-polyoxometalate (POM) complexes in salted aqueous solutions is investigated with polyampholyte copolymers consisting of both positively and negatively charged monomers. Zwitterionic polyampholytes of varied net charge, abbreviated as PAM, are synthesized by varying the feeding molar ratio of negatively charged 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) to positively charged [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) monomers in aqueous solution. The coacervate formation between PAM and inorganic anionic metatungstate POM ({W}) in LiCl added aqueous solutions can be enhanced by increasing the molar fraction of positively charged MAPTAC monomer and LiCl concentration.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Effluent wastewater containing dyes from textile, paint, and various other industrial wastes have long posed environmental damage. Functional nanomaterials offer new opportunities to treat these effluent wastes in an unprecedentedly rapid and efficient fashion due to their large surface area-to-volume ratio. In this work, we explore a new approach of wastewater treatment using macroionic coacervate complexes formed with zwitterionic polyampholytes and anionic inorganic polyoxometalate (POM) nanoclusters to extract methylene blue (MB) dye as well as other cationic industrial dyes from model wastewater.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2018
The mitochondria have emerged as a novel target for cancer chemotherapy primarily due to their central roles in energy metabolism and apoptosis regulation. Here, we report a new molecular approach to achieve high levels of tumor- and mitochondria-selective deliveries of the anticancer drug doxorubicin. This is achieved by molecular engineering, which functionalizes doxorubicin with a hydrophobic lipid tail conjugated by a solubility-promoting poly(ethylene glycol) polymer (amphiphilic doxorubicin or amph-DOX).
View Article and Find Full Text PDFMultiblock poly(arylene ether sulfone) copolymers are attractive for polyelectrolyte membrane fuel cell applications due to their reportedly improved proton conductivity under partially hydrated conditions and better mechanical/thermal stability compared to Nafion. However, the long hydrophilic sequences required to achieve high conductivity usually lead to excessive water uptake and swelling, which degrade membrane dimensional stability. Herein, we report a fundamentally new approach to address this grand challenge by introducing shape-persistent triptycene units into the hydrophobic sequences of multiblock copolymers, which induce strong supramolecular chain-threading and interlocking interactions that effectively suppress water swelling.
View Article and Find Full Text PDFAdding ionic species can critically affect the structure of weak polyelectrolyte (PE) chains, whose charge density in aqueous solution can be greatly regulated by bathing solution conditions such as pH and added ions. Distinct from simple ions that can be treated as point charges, multivalent macroions of finite size, including many charged nanoparticles and biopolymers, could show strong electrostatic coupling with PEs and effectively modify the conformation and assembly of PEs in aqueous solution. In this work, we have compared the effects of hydrophilic multivalent macroion of finite size and simple divalent ion on the conformational transition of a model weak polybase, poly(2-vinylpyridine) (P2VP), in dilute aqueous solution.
View Article and Find Full Text PDFCoacervate complexes that are liquid-liquid separated complex materials are often formed by stoichiometrically mixing oppositely charged polyelectrolytes in salted aqueous solution. Entropy-driven ion pairing, resulting from the release of counterions near polyelectrolytes, has been identified as the primary driving force for coacervate formation between oppositely charged polyelectrolytes, including proteins and DNA, in aqueous solution. In this work we have examined the complexation between net neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and inorganic polyoxometalate (POM) polyanions in LiCl aqueous solutions.
View Article and Find Full Text PDFPolymersomes are self-assembled vesicles of amphiphilic block copolymers and have been explored for wide applications from drug delivery to micro/nanoreactors. As polymersomes are soft and highly deformable, their shape instability due to osmolarity difference across polymer membranes and low elasticity could conversely limit their practical use. Instead of selecting particular polymer chemical reactions to enhance the mechanical properties, we have employed inorganic polyoxometalate (POM) clusters as simple physical cross-linkers to control the shape and mechanical stability of polymersomes in aqueous suspensions.
View Article and Find Full Text PDFThe application of ionic liquids (ILs) in many industrially relevant processes provides an urgent need to better understand their molecular interactions with biological systems. A detailed understanding of the cytotoxicity mechanism of ILs can be helpful in facilitating the molecular design of nontoxic ILs. Using coarse-grained molecular dynamics (MD) simulations, we investigate the effects of imidazolium-based ILs on several lipid bilayer morphologies.
View Article and Find Full Text PDFThe conformational structure of a polyelectrolyte chain in dilute aqueous solution is strongly coupled with its surrounding electrostatic environment. With the introduction of branched topology, the distribution of counterions in the vicinity of a polyelectrolyte chain becomes highly inhomogeneous, giving rise to complex structures of branched polyelectrolytes in dilute aqueous solution. To directly probe the local electrostatic conditions near a branched polyelectrolyte in aqueous solutions, star-shaped poly(2-vinylpyridine) (P2VP) polymers with precise labeling of one single fluorophore at different locations, for example, the star center or the terminal group of one arm, were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl-terminated P2VP macromonomers.
View Article and Find Full Text PDFIonic liquids (ILs) have been widely considered and used as "green solvents" for more than two decades. However, their ecotoxicity results have contradicted this view, as ILs, particularly hydrophobic ones, are reported to exhibit high toxicity. Yet the origin of their toxicology remains unclear.
View Article and Find Full Text PDFIonic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called "green solvents" because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive.
View Article and Find Full Text PDFWe report on studies of lipid transfer rates between different morphology nanoparticles and lipids with different length acyl chains. The lipid transfer rate of dimyristoylphosphatidylcholine (di-C14, DMPC) in discoidal "bicelles" (0.156 h(-1)) is 2 orders of magnitude greater than that of DMPC vesicles (ULVs) (1.
View Article and Find Full Text PDFThe time-dependent nucleation phase is critical to amyloid fibrillation and related to many pathologies, in which the conversion from natively folded amyloidogenic proteins to oligomers via nucleation is often hypothesized as a possible underlying mechanism. In this work, non-uniform AC-electric fields across two asymmetric electrodes were explored to control and examine the aggregation of insulin, a model amyloid protein, in aqueous buffer solution at constant temperature (20 °C) by fluorescence correlation spectroscopy and fluorescence microscopy. Insulin was rapidly concentrated in a strong AC-field by imposed AC-electroosmosis flow over an optimal frequency range of 0.
View Article and Find Full Text PDF"Fragile" glassy materials, which include most polymeric materials and organic liquids, exhibit a steep and super-Arrhenius dependence of relaxation time with temperature upon the glass transition and have been extensively studied. Yet, a full understanding of strong glass formers that exhibit an Arrhenius dependence on temperature is still lacking. In this work, we have investigated the glassy dynamics of poly(N-isopropylacrylamide) (PNIPAM) microgel particles of varied elasticity in dense aqueous suspensions, giving rise to a full spectrum of strong to fragile glass-forming behaviors.
View Article and Find Full Text PDFThe effects of cosolutes on amyloid aggregation kinetics in vivo are critical and not fully understood. To explore the effects of cosolute additives, the in vitro behavior of destabilizing and stabilizing osmolytes with polymer cosolutes on the aggregation of a model amyloid, human insulin, is probed using experiments coupled with an amyloid aggregation reaction model. The destabilizing osmolyte, guanidine hydrochloride (GuHCl), induces biphasic behavior on the amyloid aggregation rate exhibited by an enhancement of the aggregation kinetics at low concentrations of GuHCl (<0.
View Article and Find Full Text PDFThe interaction of nanoparticles with cell membranes is critical to understand and control the structural change and molecular transport of cell membranes for medicines and medical diagnostics, in which hydrophobic interaction is often involved. We examine the specific ion effect on the interaction of semihydrophobic nanoparticle with zwitterionic phospholipid bilayer in aqueous media added with different types of salts. Specifically, we compare the effect of different anions or cations on the adsorption of carboxyl-functionalized polystyrene nanoparticle on supported lipid bilayer and its induced bilayer disruption.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2014
The progression of several diseases, such as osteoporosis and diabetes, are associated with changes in marrow composition and physiology. As these diseases are affected by aging and activity, the biomechanical properties and mechanobiology of marrow may play a role in their progression. Bone marrow is comprised primarily of cells, and provides a niche for several mechanosensitive cell lineages.
View Article and Find Full Text PDFCurrent bottlenecks in the large-scale commercial use of many ionic liquids (ILs) include their high costs, low biodegradability, and often unknown toxicities. As a proactive effort to better understand the molecular mechanisms of ionic liquid toxicities, the work herein presents a comprehensive molecular simulation study on the interactions of 1-n-alkyl-3-methylimidazolium-based ILs with a phosphatidylcholine (PC) lipid bilayer. We explore the effects of increasing alkyl chain length (n = 4, 8, and 12) in the cation and anion hydrophobicity on the interactions with the lipid bilayer.
View Article and Find Full Text PDF