Publications by authors named "Yingxi Xie"

Wearable electrocardiogram (ECG) devices are the mainstream technology in the diagnosis of various cardiovascular diseases, in which soft, flexible, permeable electrodes are the key link in human-machine interface to capture bioelectrical signals. Herein, we propose a self-template strategy to fabricate silver-coated fiber/silicone (AgCF-S) electrodes. With a simple dissolving-curing-redissolving process, the polyvinyl acetate shell around the AgCF core is in-situ removed to form a three-dimensional (3D) multi-channel structure.

View Article and Find Full Text PDF

The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.

View Article and Find Full Text PDF

Flexible full-textile pressure sensor is able to integrate with clothing directly, which has drawn extensive attention from scholars recently. But the realization of flexible full-textile pressure sensor with high sensitivity, wide detection range, and long working life remains challenge. Complex recognition tasks necessitate intricate sensor arrays that require extensive data processing and are susceptible to damage.

View Article and Find Full Text PDF

Sensitivity and strain range are two mutually exclusive features of strain sensors, where a significant improvement in flexibility is usually accompanied by a reduction in sensitivity. The skin of a human fingertip, due to its undulating fingerprint pattern, can easily detect environmental signals and enhances sensitivity without losing elasticity. Inspired by this characteristic, laser-induced graphene (LIG) with a fingerprint structure is prepared in one step on a polyimide (PI) film and transferred into an Ecoflex substrate to assemble resistive strain sensors.

View Article and Find Full Text PDF

In the 5G era, for portable electronics to operate at high performance and low power levels, the incorporation of superior electromagnetic interference (EMI) shielding materials within the packages is of critical importance. A desirable wearable EMI shielding material is one that is lightweight, structurally flexible, air-permeable, and able to self-clean. To this end, a bioinspired electroless silver plating strategy and a one-step electrodeposition method are utilized to prepare an EMI shielding fabric (CEF-NF/PDA/Ag/50-30) that possesses these desirable properties.

View Article and Find Full Text PDF

Miniaturized and flexible power resources such as supercapacitors with resistance of high voltage play a critical role as potential energy storage devices for implantable and portable electronics because of their convenience, high power density, and long-term stability. Herein, we propose a novel strategy for the fabrication of high voltage microsupercapacitors (HVMSCs) employing porous laser-induced graphene (from polyimide films with alkalization treatment) followed by laser carving of the polyvinyl alcohol/HPO gel electrolyte to realize a series assembly of supercapacitors and significantly increase the voltage resistance. The results elucidated that HVMSCs (3 mm × 21.

View Article and Find Full Text PDF

Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoC, WC, and CoC) on versatile substrates using a CO laser.

View Article and Find Full Text PDF

Highly conductive carbon-based fibrous composites have become one of the most sought-after components in the field of electromagnetic interference (EMI) shielding due to their excellent comprehensive performance. In this work, a flexible nonwoven fabric consisting of carbon fibers (CFs) and polypropylene/polyethylene (PP/PE) core/sheath bicomponent fibers (ESFs), known as CEF-NF, is introduced into the graphene (GE)/poly(vinylidene fluoride) (PVDF) nanocomposite obtained by a solution casting method to fabricate a CEF-NF/GE/PVDF film. Disparate microstructures can be clearly observed in CEF-NF/GE/PVDF films with different graphene contents.

View Article and Find Full Text PDF

In this work, we propose a facile method for manufacturing a three-dimensional copper foil-powder sintering current collector (CFSCC) for a silicon-based anode lithium-ion battery. We found that the CFSCC is suitable as a silicon-based paste electrode, and the paste-like electrodes are commonly used in industrial production. Compared with flat current collectors, the CFSCC better constrained the silicon volume change during the charging-discharging process.

View Article and Find Full Text PDF

High-voltage energy-storage devices are quite commonly needed for robots and dielectric elastomers. This paper presents a flexible high-voltage microsupercapacitor (MSC) with a planar in-series architecture for the first time based on laser-induced graphene. The high-voltage devices are capable of supplying output voltages ranging from a few to thousands of volts.

View Article and Find Full Text PDF

Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.

View Article and Find Full Text PDF

Fiber-based supercapacitors have attracted significant interests because of their potential applications in wearable electronics. Although much progress has been made in recent years, the energy and power densities, mechanical strength, and flexibility of such devices are still in need of improvement for practical applications. Here, we demonstrate an ultrathin microcoaxial fiber supercapacitor (μCFSC) with high energy and power densities (2.

View Article and Find Full Text PDF

Carbon fiber microelectrode (CFME) has been extensively applied in the biosensor and chemical sensor domains. In order to improve the electrochemical activity and sensitivity of the CFME, a new CFME modified with carbon nanotubes (CNTs), denoted as CNTs/CFME, was fabricated and investigated. First, carbon fiber (CF) monofilaments grafted with CNTs (simplified as CNTs/CFs) were fabricated in two key steps: (i) nickel electroless plating, followed by (ii) chemical vapor deposition (CVD).

View Article and Find Full Text PDF