MicroRNAs (miRNAs) have been identified as crucial modulators of gene expression and to play a role in palatogenesis. The aim of this study was to explore the potential role and regulatory mechanisms of miRNAs during palatogenesis. RNA-sequencing was performed to compare the RNA expression profiles of mouse embryonic palatal shelf (MEPS) tissue between an all-trans retinoic acid (ATRA)-induced group and control group, followed by reverse transcription-quantitative polymerase chain reaction for validation, demonstrating upregulated expression of miRNA-470-5p and downregulated expression of in the ATRA-induced group.
View Article and Find Full Text PDFCleft palate (CP) is a common neonatal craniofacial defect caused by the adhesion and fusion dysfunction of bilateral embryonic palatal shelf structures. Long non-coding RNA (lncRNA) is involved in CP formation with regulatory mechanism unknown. In this study, all-trans retinoic acid (ATRA) was used to induced cleft palate in embryonic mice as model group.
View Article and Find Full Text PDF