Publications by authors named "Yingui Li"

Isoorientin (ISO), a flavone C-glycoside, is a glycogen synthase kinase 3β (GSK3β) substrate-competitive inhibitor. ISO has potential in treatment of Alzheimer's disease (AD). An excessive activation of GSK3β can lead to neuroinflammation causing neuronal damage.

View Article and Find Full Text PDF

Developing efficient catalysts to produce clean fuel by using solar energy has long been the goal to mitigate the issue of traditional fossil fuel scarcity. In this work, we design a heterostructure photocatalyst by employing two green components, Ni(OH) and ZnInS, for efficient photocatalytic H evolution under the illumination of visible light. After optimization, the obtained photocatalyst exhibits an H evolution rate at 0.

View Article and Find Full Text PDF

Isoorientin has anti-inflammatory effects; however, the mechanism remains unclear. We previously found isoorientin is an inhibitor of glycogen synthase kinase 3 (GSK3) . Overactivation of GSK3 is associated with inflammatory responses.

View Article and Find Full Text PDF

β-Amyloid (Aβ) elevation, tau hyperphosphorylation, and neuroinflammation are major hallmarks of Alzheimer's disease (AD). Glycogen synthase kinase-3β (GSK-3β) is a key protein kinase implicated in the pathogenesis of AD. Blockade of GSK-3β is an attractive therapeutic strategy for AD.

View Article and Find Full Text PDF

PEGylation is considered one of the most successful techniques to improve the characteristics of protein drugs including to increase the circulating half-life of proteins in blood and to decrease their immunogenicity and antigenicity. One known PEG modification method is to attach PEG to the free amino group, typically at lysine residues or at the N-terminal amino acid with no selectivity, resulting in a heterogeneous product mixture. This lack of selectivity can present problems when a therapeutic PEGylated protein is being developed, because predictability of activity and manufacturing reproducibility are needed for regulatory approval.

View Article and Find Full Text PDF

Mitoxantrone (MIT) was encapsulated into 60, 80 and 100nm pegylated hydrogenated soy phosphatidylcholine/cholesterol (HSPC/chol) vesicles using a transmembrane (NH(4))(2)SO(4) gradient. In-vitro release studies revealed that small-sized formulation had fast drug-release rate. Acute toxicity studies performed in c57 mice proved that all pegylated liposomal MIT (plm) formulations could be well-tolerated at a dose of 9mg/kg, significantly compared to severe toxicity induced by free mitoxantrone (f-M).

View Article and Find Full Text PDF

Besides pH gradient, other transmembrane gradients such as metal ion gradient could be also employed to load drugs into liposomes. In pH gradient method, anions have an important role since they could form specific aggregates with drugs, and then affect drug release kinetics from vesicles. To explore the role of anions in metal ion gradient method, copper ion-mediated mitoxantrone (MIT) loading was investigated systematically.

View Article and Find Full Text PDF