Melatonin (MT) is a vital hormone factor in plant growth and development, yet its potential to influence the graft union healing process has not been reported. In this study, we examined the effects of MT on the healing of oriental melon scion grafted onto squash rootstock. The studies indicate that the exogenous MT treatment promotes the lignin content of oriental melon and squash stems by increasing the enzyme activities of hydroxycinnamoyl CoA ligase (HCT), hydroxy cinnamaldehyde dehydrogenase (HCALDH), caffeic acid/5-hydroxy-conifer aldehyde O-methyltransferase (COMT), caffeoyl-CoA O-methyltransferase (CCoAOMT), phenylalanine ammonia-lyase (PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD).
View Article and Find Full Text PDFThe melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance.
View Article and Find Full Text PDFβ-1,4-glucanase can not only promote the wound healing of grafted seedlings but can also have a positive effect on a plant's cell wall construction. As a critical gene of β-1,4-glucanase, is involved in cell wall remodeling and intercellular adhesion and plays a vital role in grafting healing. However, the family members have not yet been characterized for melons.
View Article and Find Full Text PDFTetracycline is extensively used as an antibiotic in animal husbandry, and there arose an increase in antibiotic resistance genes in the environment, posing a threat to human health. Motivated by this, a magnetic molecularly imprinted material based on synergistic recognition (1 + 1>2) was constructed and coupled with high-performance liquid chromatography to detect ultra-trace tetracycline in complicated samples. In this case, the molecularly imprinted polymers were synthesized via a "one-pot" method and acted as recognition elements on the surface of silica-coated ferroferric oxide particles.
View Article and Find Full Text PDFA novel virus, Botryosphaeria dothidea fusarivirus 1 (BdFV1), was isolated from a fungal strain, SDAU11-86 of Botryosphaeria dothidea, and its complete genome sequence was determined. BdFV1 has a single-stranded positive-sense (+ssRNA) genome with 6,179 nucleotides, excluding the poly(A) tail. The genome of BdFV1 contains two putative open reading frames (ORFs).
View Article and Find Full Text PDF