Background And Objective: Since low-dose computed tomography (LDCT) images typically have higher noise that may affect accuracy of disease diagnosis, the objective of this study is to develop and evaluate a new artifact-assisted feature fusion attention (AAFFA) network to extract and reduce image artifact and noise in LDCT images.
Methods: In AAFFA network, a feature fusion attention block is constructed for local multi-scale artifact feature extraction and progressive fusion from coarse to fine. A multi-level fusion architecture based on skip connection and attention modules is also introduced for artifact feature extraction.
This paper constructed a stacked-autoencoder neural network model (SAE model) to estimate sea state bias (SSB) based on radar altimeter data. Six cycles of the geophysical data record (GDR) from Jason-1/2 radar altimeters were used as a training dataset, and the other 2 cycles of the GDR from Jason-1/2 were used for testing. The inputs to this SAE model include the significant wave height (SWH), wind speed (U), sea surface height (SSH), backscatter coefficient (σ0) and automatic gain control (AGC), and the model outputs the SSB.
View Article and Find Full Text PDF