Publications by authors named "Yingru Lin"

Drought stress limits plant growth and development. To cope with drought stress, abscisic acid (ABA) accumulates in plants. Although ABA-dependent drought tolerance pathways have been widely investigated, the feedback mechanisms and the negative regulatory roles within these pathways remain largely unknown.

View Article and Find Full Text PDF

Fully π-conjugated polymers with rigid aromatic units are promising for flexible optoelectronic devices, but their inherent brittleness poses a challenge for achieving high-performance, intrinsically stretchable fully π-conjugated polymer. Here, we are establishing an external-plasticizing strategy using semiconductor fluid plasticizers (Z1 and Z2) to enhance the optoelectronic, morphological, and stretchable properties of fully π-conjugated polymer films for flexible light-emitting diodes. The synergistic effect of hierarchical structure and optoelectronic properties of Z1 in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films enable excellent stretchable deformability (~25%) and good conductivity.

View Article and Find Full Text PDF
Article Synopsis
  • The transcription factor ELONGATED HYPOCOTYL5 (HY5) plays a crucial role in seedling growth and development in response to light.
  • E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) reduces HY5 levels through a process called ubiquitination, but how HY5 is stabilized through deubiquitination was previously unknown.
  • The enzyme Ub-SPECIFIC PROTEASE 14 (UBP14) was found to interact with HY5, enhancing its stability and promoting photomorphogenesis, while HY5 also promotes UBP14 expression to create a positive feedback loop.
View Article and Find Full Text PDF

Emerging intrinsically flexible fully π-conjugated polymers (FπCPs) are a promising functional material for flexible optoelectronics, attributed to their potential interchain interpenetration and entanglement. However, the challenge remains in obtaining elastic-plastic FπCPs with intrinsic robust optoelectronic property and excellent long-term and cycling deformation stability simultaneously for applications in deep-blue flexible polymer light-emitting diodes (PLEDs). This study, demonstrates a series of elastic-plastic FπCPs (P1-P4) with an excellent energy dissipation capacity via side-chain internal plasticization for the ultra-deep-blue flexible PLEDs.

View Article and Find Full Text PDF

Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs.

View Article and Find Full Text PDF

We have demonstrated a two-step wet chemical approach for synthesizing ternary Ag/AgS/CdS heterostructures for efficient photocatalytic hydrogen evolution. The CdS precursor concentrations and reaction temperatures are crucial in determining the efficiency of photocatalytic water splitting under visible light excitation. In addition, the effect of operational parameters (such as the pH value, sacrificial reagents, reusability, water bases, and light sources) on the photocatalytic hydrogen production of Ag/AgS/CdS heterostructures was investigated.

View Article and Find Full Text PDF

Background: Online medical and health communities provide a platform for internet users to share experiences and ask questions about medical and health issues. However, there are problems in these communities, such as the low accuracy of the classification of users' questions and the uneven health literacy of users, which affect the accuracy of user retrieval and the professionalism of the medical personnel answering the question. In this context, it is essential to study more effective classification methods of users' information needs.

View Article and Find Full Text PDF

ZnO nanowires and nanowalls can be fabricated on the glass substrate with a ZnO seed film and low-cost aluminum (Al) foil by the aqueous solution method (ASM), respectively. The different concentrations of ZnO precursors can use to control the densities of ZnO nanowalls. In addition, FESEM, FETEM, EDS, XRD, XPS, and CL were used to evaluate the characteristics of ZnO nanowalls.

View Article and Find Full Text PDF

This study used a rapid and simple microwave-assisted synthesis method to grow ZnO nanoneedle arrays on the silicon substrate with the ZnO seed layer. The effects of reaction temperature and time on the lengths of ZnO nanoneedle arrays were investigated. The appropriate temperature programming step can grow the longer ZnO nanoneedle arrays at the same reaction time (25 min), which is 2.

View Article and Find Full Text PDF

High temperature (32 to 33°C) has been shown to reduce mortality in white spot syndrome virus (WSSV)-infected shrimps, but the mechanism still remains unclear. Here we show that in WSSV-infected shrimps cultured at 32°C, transcriptional levels of representative immediate-early, early, and late genes were initially higher than those at 25°C. However, neither the IE1 nor VP28 protein was detected at 32°C, suggesting that high temperature might inhibit WSSV protein synthesis.

View Article and Find Full Text PDF

AAP-1 (WSSV449), an anti-apoptosis protein encoded by white spot syndrome virus (WSSV), blocked apoptosis in insect cells (SF9) induced by Penaeus monodon effector caspase (Pm caspase). Here, to characterize in detail the anti-Pm caspase activity of AAP-1, both proteins were expressed and purified from Escherichia coli and their interactions were assayed in vitro. We found that although AAP-1 could inhibit Pm caspase activity, the inhibition was not as efficient as that of baculovirus anti-apoptosis protein P35.

View Article and Find Full Text PDF

Background & Objective: It is difficult to diagnose tumor residue by CT/MRI after treatment. The application of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) to determine the suspected tumor residue after treatment has become a hot target in the study of radiotherapy. This study was designed to discuss the clinical value of (18)-FDG PET imaging in post-operative and post-radiotherapeutic intracranial glioma.

View Article and Find Full Text PDF