Publications by authors named "Yingqin Wang"

Background: Ethyl palmitate (EP) is known to promote hepatic fetuin-A production and modulate inflammatory responses, but its potential role in lethal endotoxemia and sepsis remains unclear. This study investigates the plasma fetuin-A levels and further evaluates the impact of hepatic fetuin-A induced by EP on systemic inflammation and macrophage polarization in lethal endotoxemia and sepsis.

Methods: Blood samples from 55 sepsis patients and 18 non-septic controls with similar age and sex ratio were collected to perform proteomic analyses and identify significantly different proteins.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD), a nucleotide-containing metabolite, can be incorporated into the RNA 5'-terminus to result in NAD-capped RNA (NAD-RNA). Since NAD has been heightened as one of the most essential metabolites in cells, its linkage to RNA represents a critical but poorly studied modification at the epitranscriptomic level. Here, we design a highly sensitive method, DO-seq, to capture NAD-RNAs.

View Article and Find Full Text PDF

Background: Currently, some meta-analyses on COVID-19 have suggested that glucocorticoids use can reduce the mortality rate of COVID-19 patients, utilization rate of invasive ventilation, and improve the prognosis of patients. However, optimal regimen and dosages of glucocorticoid remain unclear. Therefore, the purpose of this network meta-analysis is to analyze the efficacy and safety of glucocorticoids in treating COVID-19 at regimens.

View Article and Find Full Text PDF

In this study, a process based on the molten salt method was proposed to prepare LaZrO for improving the kinetic conditions of synthesis. Considering that the particle size of raw materials is an important factor that may have an effect on the kinetic process of synthesis, ZrO and LaO with different particle sizes are used as raw materials, and the synthesis experiment is carried out at 900-1300 °C through the combination of raw materials with different particle sizes. The results show that the particle size of ZrO plays an important role in the synthesis of LaZrO.

View Article and Find Full Text PDF

Background: Inhibition of sphingosine kinase 1 (SphK1), which catalyzes bioactive lipid sphingosine-1-phosphate (S1P), attenuates NLRP3 inflammasome activation. S1P exerts most of its function by binding to S1P receptors (S1PR1-5). The roles of S1P receptors in NLRP3 inflammasome activation remain unclear.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) has caused more than 2 million deaths worldwide. Viral sepsis has been proposed as a description for severe COVID-19, and numerous therapies have been on trials based upon this hypothesis. However, whether the clinical characteristics of severe COVID-19 are similar to those of bacterial sepsis has not been elucidated.

View Article and Find Full Text PDF

Background: Sepsis is the overwhelming inflammatory response to infection, in which nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome plays a crucial role. Shingosine-1-phosphate is reported to evoke NLRP3 inflammasome activation. Sphingosine kinase 1 (SphK1) is the major kinase that catalyzes bioactive lipid shingosine-1-phosphate formation and its role in sepsis remains uncertain.

View Article and Find Full Text PDF

Background: Sphingosine-1-phosphate (S1P), a bioactive lipid, is generally increased in human non-small cell lung cancer (NSCLC). Evidence has shown that the levels of enzymes in S1P metabolism were associated with clinical outcomes in patients with NSCLC. Nevertheless, the roles of mRNA expression of major enzymes (, and ) in S1P metabolism for predicting outcomes in NSCLC patients have not been determined.

View Article and Find Full Text PDF

Background: Macrophages can polarize to M2 phenotype to decrease inflammation and encourage tissue repair. Nonetheless, its role in sepsis-induced acute lung injury and its effect on endothelial cells (ECs) regeneration remains unknown. The aim of the current study was to explore the impact of M2 macrophages on pulmonary ECs proliferation in sepsis-induced acute lung injury.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition with high mortality that imposes a serious medical burden. Antiplatelet therapy is a potential strategy for preventing ARDS in patients with a high risk of developing this condition. A meta-analysis was performed to investigate whether antiplatelet therapy could reduce the incidence of newly developed ARDS and its associated mortality in high-risk patients.

View Article and Find Full Text PDF