IEEE Trans Neural Netw Learn Syst
January 2024
This article proposes predefined-time adaptive neural network (PTANN) and event-triggered PTANN (ET-PTANN) models to efficiently compute the time-varying tensor Moore-Penrose (MP) inverse. The PTANN model incorporates a novel adaptive parameter and activation function, enabling it to achieve strongly predefined-time convergence. Unlike traditional time-varying parameters that increase over time, the adaptive parameter is proportional to the error norm, thereby better allocating computational resources and improving efficiency.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
July 2024
As an extension of the Lyapunov equation, the time-varying plural Lyapunov tensor equation (TV-PLTE) can carry multidimensional data, which can be solved by zeroing neural network (ZNN) models effectively. However, existing ZNN models only focus on time-varying equations in field of real number. Besides, the upper bound of the settling time depends on the value of ZNN model parameters, which is a conservative estimation for existing ZNN models.
View Article and Find Full Text PDF