The rhizosphere harbors abundant plant growth-promoting rhizobacteria (PGPR) that are vital for plant health. In this study, we screened growth-promoting bacteria from tomato rhizosphere soil, verified their functions, and constructed the optimal combination of growth-promoting bacteria for promoting tomato growth. Furthermore, the effects of these bacteria on various physiological and biochemical parameters of tomato plants were evaluated.
View Article and Find Full Text PDFThe regulatory mechanism of the MBW (MYB-bHLH-WD40) complex in safflower (Carthamus tinctorius) remains unclear. In the present study, we show that the separate overexpression of the genes CtbHLH41, CtMYB63, and CtWD40-6 in Arabidopsis thaliana increased anthocyanin and procyanidin contents in the transgenic plants and partially rescued the trichome reduction phenotype of the corresponding bhlh41, myb63, and wd40-6 single mutants. Overexpression of CtbHLH41, CtMYB63, or CtWD40-6 in safflower significantly increased the content of the natural pigment hydroxysafflor yellow A (HYSA) and negatively regulated safflower petal size.
View Article and Find Full Text PDFFlavonoids with significant therapeutic properties play an essential role in plant growth, development, and adaptation to various environments. The biosynthetic pathway of flavonoids has long been studied in plants; however, its regulatory mechanism in safflower largely remains unclear. Here, we carried out comprehensive genome-wide identification and functional characterization of a putative gene encoding an isoflavone 2'-hydroxylase from safflower.
View Article and Find Full Text PDFWe performed genome-wide and heterologous expression analysis of the safflower cysteine protease family and found that inhibition of CtCP1 expression enhanced plant cold resistance. Cysteine protease (CP) is mainly involved in plant senescence and stress responses. However, the molecular mechanism of endogenous cysteine protease inhibition in plant stress tolerance is yet unknown.
View Article and Find Full Text PDFThe MYB transcription factors comprise one of the largest superfamilies in plants that have been implicated in the regulation of plant-specific metabolites and responses to biotic and abiotic stresses. Here, we present the first comprehensive genome-wide analysis and functional characterization of the CtMYB family in Carthamus tinctorius. A total of 272 CtMYBs were identified and classified into 12 subgroups using comparative phylogenetic analysis with Arabidopsis and rice orthologs.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
July 2020
The WD40 transcription factor family is a gene superfamily widely found in eukaryotes, which is closely related to plant growth and development regulation. It has been reported that the WD40 transcription factor was involved in the synthesis of anthocyanins, which is one of the vital components of safflower flavonoid compounds. In this study, 40 CtWD40 members in the safflower genome were identified though bioinformatics tools and gene expression analysis methods.
View Article and Find Full Text PDF