A poor outcome for cholangiocarcinoma (CCA) patients is still a clinical challenge. CCA is typically recognized by the desmoplastic nature, which accounts for its malignancy. Among various extracellular matrix proteins, laminin is the most potent inducer for CCA migration.
View Article and Find Full Text PDFCholangiocarcinoma (CCA), the malignant tumor of bile duct epithelial cells, is a relatively rare yet highly lethal cancer. In this work, we tested the ability of Resveratrol (RV) to prevent and cure CCA xenograft in nude mice and investigated molecular mechanisms underpinning such anticancer effect. Human CCA cells were xenografted in mice that were or not treated prior to or after to transplantation with RV.
View Article and Find Full Text PDFBackground: Niclosamide is an oral anthelminthic drug that has been used for treating tapeworm infections. Its mechanism involves the disturbance of mitochondrial membrane potential that in turn inhibits oxidative phosphorylation leading to ATP depletion. To date, niclosamide has been validated as the potent anti-cancer agent against several cancers.
View Article and Find Full Text PDFThe three-dimensional multicellular spheroid (3D MCS) model has been employed in cholangiocarcinoma research as it generates 3D architecture and includes more physiological relevance with the multicellular arrangement. However, it is also essential to explain the molecular signature in this microenvironment and its structural complexity. The results indicated that poorly differentiated CCA cell lines were unable to form 3D MCS due to the lack of cell adhesion molecules with more mesenchymal marker expression.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are the dominant component of the tumor microenvironment (TME) that can be beneficial to the generation and progression of cancer cells leading to chemotherapeutic failure several mechanisms. Nevertheless, the roles of CAFs on anti-cancer drug response need more empirical evidence in cholangiocarcinoma (CCA). Herein, we examined the oncogenic roles of CAFs on gemcitabine resistance in CCA cells mediated IL-6/STAT3 activation.
View Article and Find Full Text PDFPyrvinium pamoate (PP), an FDA-approved anthelmintic drug, has been validated as a highly potent anti-cancer agent and patented recently as a potential chemotherapeutic drug for various cancers. The aims of this study were, therefore, to investigate the ability of PP in anti-proliferative activity and focused on the lipid profiles revealing the alteration of specific lipid species in the liver fluke (Ov)-associated cholangiocarcinoma (CCA) cells. PP inhibited CCA cell viability through suppressing mitochondrial membrane potential (MMP) and ATP productions, leading to apoptotic cell death.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is a major cause of mortality in Northeast Thailand with about 14,000 deaths each year. There is an urgent necessity for novel drug discovery to increase effective treatment possibilities. A recent study reported that lignin derived from can cause CCA cell inhibition.
View Article and Find Full Text PDFCD44 is a transmembrane glycoprotein, the phosphorylation of which can directly trigger intracellular signaling, particularly Akt protein, for supporting cell growth, motility and invasion. This study examined the role of CD44 on the progression of Cholangiocarcinoma (CCA) using metabolic profiling to investigate the molecular mechanisms involved in the Akt signaling pathway. Our results show that the silencing of CD44 decreases Akt and mTOR phosphorylation resulting in p21 and Bax accumulation and Bcl-2 suppression that reduces cell proliferation.
View Article and Find Full Text PDFBackground: Opisthorchis viverrini (Ov) infection-induced cholangiocarcinoma (CCA) is a major public health problem in northeastern Thailand. Praziquantel was shown to prevent CCA development in an Ov-infected hamster model; however, the molecular mechanism remains unknown.
Materials And Methods: In this study, we used a hamster model with Ov and N-nitrosodimethylamine-induced CCA to study the mechanisms of praziquantel action.
Background/aim: This study examined the in vitro effects of the bile duct cancer drug PRIMA-1 on cholangiocarcinoma (CCA) cell growth to determine its potential usefulness in CCA therapy.
Materials And Methods: The effect of this drug on the expression of senescent markers (p16 and p21) and the phosphorylation of p53 was investigated, as was the association between senescent markers and the patients' clinicopathological data.
Results: PRIMA-1 inhibited CCA cell growth with the half maximal-inhibitory concentration (IC) values of 21.
The protein 14-3-3ζ contributes important regulatory functions in several cellular processes via binding to phosphorylated serine/threonine residues, which promotes cell cycle progression, cell proliferation and anti-apoptosis in multiple types of cancer. The aim of the present study was to investigate the functions of 14-3-3ζ in cholangiocarcinoma (CCA) progression and elucidate the molecular mechanism of 14-3-3ζ expression-mediated protein kinase B (Akt) phosphorylation and chemosensitivity in CCA cells. In the present study, 14-3-3ζ expression was investigated in clinical specimens using immunohistochemistry and compared with the clinicopathological features of patients with CCA.
View Article and Find Full Text PDF