Publications by authors named "Yingpeng Gu"

Generally, the pH of fluorinated groundwater or many industrial wastewater is neutral, while the majority of metal-modified adsorbents can work efficiently only under acidic conditions. In this study, we synthesized a novel hybrid adsorbent, Mg-Zr-D213, by loading nano-Mg/Zr binary metal (hydrogen) oxides in a strong-base anion exchanger, D213, to enhance the adsorption of fluoride from neutral water. Mg-Zr-D213 exhibited a better fluoride-removal capacity in neutral water than monometallic modified resins.

View Article and Find Full Text PDF

Cupric (Cu(II)) complexes in industrial wastewater are responsible for the failure of conventional alkaline precipitation, but the properties of cuprous (Cu(I)) complexes at alkaline circumstance have not been focused. This report proposed a novel strategy for the remediation of Cu(II)-complexed wastewater by coupling alkaline precipitation with green benign reductant, namely, hydroxylamine hydrochloride (HA). This remediation process (HA-OH) exhibits superior Cu removal efficiency that cannot be achieved with the same dosage of oxidants (3 mM).

View Article and Find Full Text PDF

High water content in sludge will affect the transportation and subsequent disposal of sludge. Bioleaching is a biological sludge conditioning technology, which can effectively improve the dewatering performance of sludge and reduce the content of heavy metals in sludge. Coal fly ash, as a skeleton builder, can also improve the dewatering performance of sludge.

View Article and Find Full Text PDF

Although sulfate radical-based advanced oxidation processes (SR-AOPs) have shown great potential for the efficient degradation of various organic contaminants, there is few research on the removal of organophosphorus pesticides (OPPs) through SR-AOPs. In this work, Co-doped FeO magnetic particles encapsulated by zirconium-based metal-organic frameworks (Co-FeO@UiO-66) were prepared and employed to activate peroxymonosulfate (PMS) for the elimination of fenitrothion (FNT) and the simultaneous in-situ adsorption of produced phosphate. The catalyst exhibited efficient catalytic performance, achieving above 90.

View Article and Find Full Text PDF

Cu(II)-citrate (Cu(II)-CA) complex, as one of the components in plating solutions, increases the difficulty of Cu(II) treatment due to its stable structure and high mobility. In this work, a novel surface imprinted polymer (Cu-CA-SIP) for selective removal of Cu(II)-CA complex from aqueous solution is synthesized by using polyethyleneimine (PEI) grafted onto chloromethylated polystyrene (CMP) microspheres. Cu(II)-CA anions are successfully imprinted with the molar ration of 1:1 by Cu-CA-SIP at initial pH 4.

View Article and Find Full Text PDF

Metal-complexed dyes are harmful to the environment and human health because they contain heavy metals and complex organic ligands. It is difficult to separate and recover these dyes from wastewater owing to their complex components and poor selectivity of common adsorbents. In this study, a novel surface molecularly imprinted polymer (SMIP) was prepared using 4-vinyl pyridine as the functional monomer and polystyrene resin as the carrier.

View Article and Find Full Text PDF

The presence of aromatic compounds with multiple functional groups such as 5-sulfosalicylic acid (SSA) in water bodies is a threat to aquatic organisms and human health. Phenol (PH) with the -OH group, benzoic acid with -COOH and benzenesulfonic acid (BSA) with -SOH can be considered as SSA structural unit. In this study, three functional monomers, namely, N-methylallylamine, diallylamine, and triallylamine, with strong affinity for PH, BA, and BSA, respectively, were selected from 16 monomers by using density functional theory (DFT).

View Article and Find Full Text PDF