Publications by authors named "Yingni Xiao"

Rice is susceptible to cold temperatures, especially during the seedling stage. Despite extensive research into the cold tolerance mechanisms of rice, the number of cloned genes remains limited. Plant subtilisin-like proteases (SUBs or SBTs) are protein-hydrolyzing enzymes which play important roles in various aspects of plant growth as well as the plant response to biotic and abiotic stress.

View Article and Find Full Text PDF

Carotenoids are indispensable to plants and critical components of the human diet. The carotenoid metabolic pathway is conserved across plant species, but our understanding of the genetic basis of carotenoid variation remains limited for the seeds of most cereal crops. To address this issue, we systematically performed linkage and association mapping for eight carotenoid traits using six recombinant inbred line (RIL) populations.

View Article and Find Full Text PDF
Article Synopsis
  • Fresh sweet corn has a short shelf-life because of its moisture and sugar, but low temperature storage can help extend it.
  • At low temperatures, sweet corn kernels had more soluble sugars and less starch, with a study identifying 1365 total metabolites and 607 differentially accumulated metabolites (DAMs) specific to low-temperature storage.
  • The identified DAMs were mostly related to flavonoid biosynthesis, linoleic acid metabolism, and sphingolipid metabolism, providing insights into how storage conditions affect sweet corn’s chemical properties.
View Article and Find Full Text PDF

Typically, sweet corn, particularly sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet corn varieties under low-temperature conditions, and the underlying mechanisms behind this phenomenon remain unclear. In this study, we screened two inbred sweet corn lines (tolerant line L282 and sensitive line L693) differing in their low-temperature germination rates; while no difference was observed in their germination rates at normal temperatures.

View Article and Find Full Text PDF

Folate is commonly synthesized in natural plants and is an essential water-soluble vitamin of great importance inhuman health. Although the key genes involved in folate biosynthesis and transformation pathways have been identified in plants, the genetic architecture of folate in sweet corn kernels remain largely unclear. In this study, an association panel of 295 inbred lines of sweet corn was constructed.

View Article and Find Full Text PDF

A better understanding of the extent of convergent selection among crops could greatly improve breeding programs. We found that the quantitative trait locus in maize and its rice ortholog, , experienced convergent selection. These orthologs encode WD40 proteins and interact with a gene of unknown function, DUF1644, to negatively regulate grain number in both crops.

View Article and Find Full Text PDF

Starch is the most abundant storage carbohydrate in maize kernels and provides calories for humans and other animals as well as raw materials for various industrial applications. Decoding the genetic basis of natural variation in kernel starch content is needed to manipulate starch quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage mapping, joint linkage mapping and a genome-wide association study in a multi-parent population containing six recombinant inbred line populations.

View Article and Find Full Text PDF

Starch is the major component in maize kernels, providing a stable carbohydrate source for humans and livestock as well as raw material for the biofuel industry. Increasing maize kernel starch content will help meet industry demands and has the potential to increase overall yields. We developed a pair of maize near-isogenic lines (NILs) with different alleles for a starch quantitative trait locus on chromosome 3 (qHS3), resulting in different kernel starch content.

View Article and Find Full Text PDF

Background: Starch from maize kernels has diverse applications in human and animal diets and in industry and manufacturing. To meet the demands of these applications, starch quantity and quality need improvement, which requires a clear understanding of the functional mechanisms involved in starch biosynthesis and accumulation. In this study, a recombinant inbred line (RIL) population was developed from a cross between inbred lines CI7 and K22.

View Article and Find Full Text PDF