The number of people with Alzheimer's disease (AD) is increasing annually, with the nidus mainly concentrated in the cortex and hippocampus. Despite of numerous efforts, effective treatment of AD is still facing great challenges due to the blood brain barrier (BBB) and limited drug distribution in the AD nidus sites. Thus, in this study, using vinpocetine (VIN) as a model drug, the objective is to explore the feasibility of tackling the above bottleneck via intranasal drug delivery in combination with a brain guider, borneol (BOR), using nanoemulsion (NE) as the carrier.
View Article and Find Full Text PDFMucoadhesive and mucopenetrating nanoparticles are commonly designed to improve mucosal drug delivery efficiency. Herein, in order to better understand the contribution of mucoadhesion and mucopenetration in oral delivery of biomacromolecules, insulin-loaded poly (n-butylcyanoacrylate) nanoparticles (Ins/PBCA NPs) with different coating layers, chitosan (CS) or alginate (Alg), were designed and their different absorption enhancing mechanisms were explored. It was demonstrated that both the mucoadhesive (Ins/PBCA/CS) and the mucopenetrating (Ins/PBCA/CS/Alg) nanoparticles showed good stability and similar release profiles in the gastrointestinal fluid, the mucoadhesive nanoparticles presented an enrichment in mucus (70%, 10 min) while most of the mucopenetrating nanoparticles penetrated through the mucus (80%, 10 min).
View Article and Find Full Text PDFThe main objective of this paper is to elucidate the influence of drug-carrier compatibility and preparation method on the properties of Paclitaxel (PTX)-loaded lipid liquid crystalline nanoparticles (LLCNs). Here, glyceryl monooleate (GMO), glycerol monolinoleate (GML), glyceryl monolinolenate (GMLO) were selected as the lipids, and Soluplus, Poloxamer 407 (P407), Tween 80 were selected as the stabilizer to prepare LLCNs. First of all, PTX-carrier compatibility was screened by molecular dynamic simulation using Flory-Huggins interaction parameter as the criteria.
View Article and Find Full Text PDFMucus penetration and intestinal cells targeting are two main strategies to improve insulin oral delivery efficiency. However, few studies are available regarding the effectiveness of combining these two strategies into one nano-delivery system. For this objective, the folic acid (FA) decorated virus-mimicking nanoparticles were designed and influence of FA graft ratio on the in vitro and in vivo properties of insulin loaded nanoparticles was studied systemically.
View Article and Find Full Text PDFMacromolecular drugs, characterized by low stability and large molecular weight, still faced various difficulties by oral administration. And controlling drugs' release rate to reach the physiological concentration in the blood was recognized as one of the main challenges in this field but no studies are available so far. Thus, the objective of this study was to investigate the effect of insulin release rate on its in vitro and in vivo behavior when other obstacles (drug stability, mucus penetration and retention in gastrointestinal tract) was firstly overcome.
View Article and Find Full Text PDFNasal administration of insulin showed the attractive potential to improve the compliance of diabetic patients and alleviate mild cognitive impairment of Alzheimer's patients. However, the nasal absorption of insulin was not ideal, limiting its therapeutic effect in clinic. This study was to explore the potential of glyceryl monocaprylate-modified chitosan (CS-GMC) on the intranasal absorption of insulin via in vivo pharmacodynamic experiment in conscious rats.
View Article and Find Full Text PDFDrug delivery to the brain is limited by the blood-brain barrier (BBB). Intranasal delivery is a non-invasive route of drug administration which can bypass the BBB and contributed to a direct and rapid transport of drugs to the brain. However, intrinsic drug distribution to the brain after intranasal administration may not be sufficient to achieve required clinical efficacy.
View Article and Find Full Text PDFIn the present work the feasibility of using inner layer-embedded contact lenses (CLs) to achieve sustained release of highly water soluble drug, betaxolol hydrochloride (BH) on the ocular surface was investigated. Blend film of cellulose acetate and Eudragit S100 was selected as the inner layer, while silicone hydrogel was used as outer layer to construct inner layer-embedded contact lenses. Influence of polymer ratio in the blend film on in vitro drug release behavior in phosphate buffered solution or simulated tear fluid was studied and drug-polymer interaction, erosion and swelling of the blend film were characterized to better understand drug-release mechanism.
View Article and Find Full Text PDF