Publications by authors named "Yingna Cai"

Introduction: Rapid identification of infected individuals through viral RNA or antigen detection followed by effective personal isolation is usually the most effective way to prevent the spread of a newly emerging virus. Large-scale detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the SARS-CoV-2 pandemic.

View Article and Find Full Text PDF

Purpose: Microtubules play a critical role in many cellular functions, including cell division and mitosis. ABT-751 is a novel sulfonamide antimitotic that binds to the colchicine site on beta-tubulin that leads to a block in the cell cycle at the G2M phase, resulting in cellular apoptosis. ABT-751 was investigated in this phase 1 trial designed to assess its maximum tolerated dose (MTD), dose-limiting toxicity (DLT), tolerability, and pharmacokinetics.

View Article and Find Full Text PDF

The novel ribosome inhibitors (NRIs) are a broad-spectrum naphthyridine class that selectively inhibits bacterial protein synthesis (P. J. Dandliker et al.

View Article and Find Full Text PDF

Structure-activity relationships for a recently discovered novel ribosome inhibitor (NRI) class of antibacterials were investigated. Preliminary efforts to optimize protein synthesis inhibitory activity of the series through modification of positions 3 and 4 of the naphthyridone lead template resulted in the identification of several biochemically potent analogues. A lack of corresponding whole cell antibacterial activity is thought to be a consequence of poor cellular penetration as evidenced by the enhancement of activity observed for a lead analogue tested in the presence of a cell permeabilizing agent.

View Article and Find Full Text PDF

A novel class of MurF inhibitors was discovered and structure-activity relationship studies have led to several potent compounds with IC(50)=22 approximately 70 nM. Unfortunately, none of these potent MurF inhibitors exhibited significant antibacterial activity even in the presence of bacterial cell permeabilizers.

View Article and Find Full Text PDF

We report the discovery and characterization of a novel ribosome inhibitor (NRI) class that exhibits selective and broad-spectrum antibacterial activity. Compounds in this class inhibit growth of many gram-positive and gram-negative bacteria, including the common respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Moraxella catarrhalis, and are nontoxic to human cell lines. The first NRI was discovered in a high-throughput screen designed to identify inhibitors of cell-free translation in extracts from S.

View Article and Find Full Text PDF

ABT-492 demonstrated potent antibacterial activity against most quinolone-susceptible pathogens. The rank order of potency was ABT-492 > trovafloxacin > levofloxacin > ciprofloxacin against quinolone-susceptible staphylococci, streptococci, and enterococci. ABT-492 had activity comparable to those of trovafloxacin, levofloxacin, and ciprofloxacin against seven species of quinolone-susceptible members of the family Enterobacteriaceae, although it was less active than the comparators against Citrobacter freundii and Serratia marcescens.

View Article and Find Full Text PDF