Aim: Myocardial infarction (MI) is one of the leading causes of death in elderly people. Expanding the knowledge of the molecular mechanisms underlying MI is of profound importance to developing a cure for MI. The CUGBP- and ETR-3-like factor (CELF) proteins, a family of RNA-binding proteins, play key roles in RNA metabolism.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a master regulator of skeletal muscle metabolic pathways. Recently, AMPK activation by AICAR has been shown to increase myofibrillar protein degradation in C2C12 myotubes via stimulating autophagy and ubiquitin proteasome system. However, the impact of AMPKα on denervation induced muscle atrophy has not been tested.
View Article and Find Full Text PDFRNA binding protein is identified as an important mediator of aberrant alternative splicing in muscle atrophy. The altered splicing of calcium channels, such as ryanodine receptors (RyRs), plays an important role in impaired excitation-contraction (E-C) coupling in muscle atrophy; however, the regulatory mechanisms of ryanodine receptor 1 (RyR1) alternative splicing leading to skeletal muscle atrophy remains to be investigated. In this study we demonstrated that CUG binding protein 1 (CUG-BP1) was up-regulated and the alternative splicing of RyR1 ASI (exon70) was aberrant during the process of neurogenic muscle atrophy both in human patients and mouse models.
View Article and Find Full Text PDFArch Biochem Biophys
January 2015
Calcium (Ca(2+)) oscillations play a central role in varieties of cellular processes including fertilization and immune response, but controversy over the regulation mechanisms still exists. It has been known that nitric oxide (NO) dependently regulates Ca(2+) signaling in most physiopathological processes. Previous study indicated that eNOS translocation during some pathological process influences intracellular Ca(2+) homeostasis.
View Article and Find Full Text PDF