The synthesis of nanomaterials from renewable resources has emerged as an environmentally friendly alternative. This approach helps to reduce the use of chemical fertilizers in agricultural production, further reducing the potential harm to the ecosystem and effectively reducing the burden on the environment. In this work, we synthesized derived carbon dots (CDs) using the microwave hydrothermal method (RR-CDs) and the electrolytic oxidation method (GRR-CDs), and the results showed that RR-CDs had a wider ultraviolet absorption range and emitted blue fluorescence.
View Article and Find Full Text PDFResistive random access memory (RRAM) has emerged as a promising candidate for next-generation storage technologies due to its simple structure, high running speed, excellent durability, high integration density, and low power consumption. This paper focuses on the application of organic-inorganic hybrid perovskite (OIHP) materials in RRAM by introducing an innovative three-dimensional POPA modification strategy, which is realized by binding octa-amine-polyhedral oligomeric silsesquioxanes (8NH-POSS) onto the side chains of poly(acrylic acid) (PAA), thereby enhancing the material's resilience under elevated temperatures and humidity conditions. POPA cross-links with perovskite grains at crystalline boundaries through multiple -NH and -C═O chemical anchoring sites on its branch chain, enhancing the grain adhesion, optimizing the film quality, and improving the cage structure distribution at the perovskite grain boundaries.
View Article and Find Full Text PDFIn the era of smart agriculture, the precise labeling and recording of growth information in plants pose challenges for modern agricultural production. This study introduces strontium aluminate particles coated with HPO as luminescent labels capable of spatial embedding within plants for information encoding and storage during growth. The encapsulation with HPO imparts stability and enhanced luminescence to SrAlO:Eu,Dy (SAO).
View Article and Find Full Text PDFThe design of multifunctional nanocarriers with enhanced photothermal efficiency is of great significance for the photothermal therapy of cancer. In this study, hollow CuS@gold nanorods/polydopamine (HCuS@AuNRs/PDA) nanohybrids with synergistically enhanced photothermal efficiency were prepared by electrostatic self-assembly method. The high photothermal conversion efficiency of HCuS@AuNRs (55.
View Article and Find Full Text PDFWith the rapid development of the pipeline transportation and exploitation of mineral resources, there is an urgent requirement for high-performance polymer matrix composites with low friction and wear, especially under oxidative and prolonged working conditions. In this work, ultra-high-molecular-weight polyethylene (UHMWPE) matrix composites with the addition of carbon fibers (CFs), TiC, and MoS were prepared by the hot press sintering method. The influence of thermal oxygen aging time (90 °C, 0 h-64 h) on their mechanical and frictional performance was investigated.
View Article and Find Full Text PDFThe unique properties of upconversion nanoparticles (UCNPs) are responsible for their diverse applications in photonic materials, medicine, analytics, and energy conversion. In this study, water-soluble rare-earth upconversion nanomaterials emitting green, yellow, and red light under 1550 nm excitation were synthesized. These nanomaterials were then integrated into water-soluble Kevlar nanofibers (KNFs) to fabricate ultra-thin composite films exhibiting favorable mechanical characteristics.
View Article and Find Full Text PDFIntracranial chordomas (ICs) are associated with a poor prognosis due to low total resection rates and high recurrence rates. However, the role of immunotherapy in ICs remains unknown. RNA sequencing and immunohistochemical staining were performed on IC tissues and normal tissues, and the long noncoding RNA (lncRNA) lnc-GLYATL2-2 was identified.
View Article and Find Full Text PDFCadmium (Cd), which is a nonessential heavy metal element for organisms, can have a severe impact on the growth and development of organisms that absorb excessive Cd. Studies have shown that Brassica carinata, a semiwild oil crop, has strong tolerance to various abiotic stresses, and RNA-seq has revealed that the B. carinata superoxide dismutase gene (BcaSOD1) likely responds to Cd stress.
View Article and Find Full Text PDFUnder global warming, the availability of water resources is one of the most important factors affecting trait evolution and plant species distribution across terrestrial ecosystems, and the relationships between drought resistance strategies and the hydrological niche characteristics of plants are worth studying. We continuously monitored physiological drought response parameters such as g , T , proline, soluble sugar, gene expression and activities of SOD, POD, and CAT to assess drought resistance strategies of Platycarya longipes and Lindera communis; determined plant soil hydrological niche separation by stable H and O isotope analysis; and analysed the effects of interspecific water competition by comparing the differences in morphological and physiological parameters between solo and mixed planting. Under drought stress, L.
View Article and Find Full Text PDFNanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids.
View Article and Find Full Text PDFRoom temperature phosphorescent (RTP) materials with long-lived, excitation-dependent, and time-dependent phosphorescence are highly desirable but very hard to achieve. Herein, this work reports a rational strategy of multiple wavelength excitation and time-dependent dynamic RTP color by confining silane-functionalized carbon dots (CDs) in a silica matrix (Si-CDs@SiO). The Si-CDs@SiO possesses unique green-light-excitation and a change in phosphorescence color from yellow to green.
View Article and Find Full Text PDFCarbon dots (CDs), as emerging long afterglow luminescent material, have attracted the attention of researchers and become one of the hot topics in long afterglow materials. In recent years, researchers have obtained a series of CDs-based long afterglow materials with different properties utilizing matrix-assisted and self-protective methods. To meet diverse application needs, the development of multicolor CDs-based long afterglow materials is a focus and challenge in this field.
View Article and Find Full Text PDFCarbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects.
View Article and Find Full Text PDF0D copper-based perovskites (CsCuI) have fascinating optical properties, such as strong exciton binding energy, high photoluminescence quantum yield (PLQY) and large Stokes shifts from self-trapped excitons (STEs), which make them highly considerable candidates in the field of lighting. However, the stability of CsCuI is compromised by the oxidation of Cu to Cu during the storage or operation process. Here, we proposed a ligand engineering strategy to improve the stability of CsCuI an organic molecule (ethylenediaminetetraacetic acid, EDTA) with multiple functional groups.
View Article and Find Full Text PDFPurpose: This study aimed to introduce a technique of external fixation using a combination of bone cement and K-wires, to treat pathological fractures related to solitary digital enchondroma close to the finger joints.
Methods: From October 2015 to January 2021, 21 patients (8 males and 13 females) with acute pathological fracture due to solitary digital enchondroma close to the finger joints were treated with cemented K-wire external fixators. Mean age was 32 (19-51) years.
Background: Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified.
Methods: The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets.
Carbon dot (CD)-based luminescent materials have attracted great attention in optical anti-counterfeiting due to their excellent photophysical properties in response to ultraviolet-to-visible excitation. Hence, there is an urgent need for the general synthesis of CD-based materials with multimode luminescence properties and high stability; however, their synthesis remains a formidable challenge. Herein, CDs were incorporated into a Yb,Tm-doped YF matrix to prepare CDs@YF:Yb,Tm composites.
View Article and Find Full Text PDFThis paper describes performance enhancement developments to a closed-loop pump-driven wire-guided flow jet (WGJ) for ultrafast X-ray spectroscopy of liquid samples. Achievements include dramatically improved sample surface quality and reduced equipment footprint from 7 × 20 cm to 6 × 6 cm, cost, and manufacturing time. Qualitative and quantitative measurements show that micro-scale wire surface modification yields significant improvements to the topography of the sample liquid surface.
View Article and Find Full Text PDFDeveloping solid-state electrolyte with sufficient ionic conduction and flexible-intimate interface is vital to advance fast-charging solid-state lithium batteries. Solid polymer electrolyte yields the promise of interfacial compatibility, yet its critical bottleneck is how to simultaneously achieve high ionic conductivity and lithium-ion transference number. Herein, single-ion conducting network polymer electrolyte (SICNP) enabling fast charging is proposed to positively realize fast lithium-ion locomotion with both high ionic conductivity of 1.
View Article and Find Full Text PDFThe development of promising solid-state lithium batteries has been a challenging task mainly due to the poor interfacial contact and high interfacial resistance at the electrode/solid-state electrolyte (SSE) interface. Herein, we propose a strategy for introducing a class of covalent interactions with varying covalent coupling degrees at the cathode/SSE interface. This method significantly reduces interfacial impedances by strengthening the interactions between the cathode and SSE.
View Article and Find Full Text PDFDithieno[3',2':3,4;2",3":5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) is a newly emerging building block to construct effective photovoltaic polymers. Organic solar cells (OSCs) based on DTBT-based polymers have realized power conversion efficiency (PCEs) over 18%, despite their relatively low open-circuit voltage (V ) of 0.8-0.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.