Circulating genetically abnormal cells (CACs) serve as crucial biomarkers for lung cancer diagnosis. Detecting CACs holds great value for early diagnosis and screening of lung cancer. To aid the identification of CACs, we have incorporated deep learning algorithms into our CACs detection system, specifically developing algorithms for cell segmentation and signal point detection.
View Article and Find Full Text PDFIdentification of novel non-invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle-based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi-modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule.
View Article and Find Full Text PDF