The explosion in foundation poses a significant threat to people and buildings. Currently, a unified empirical prediction formula for crater in calcareous foundation has not been established. In this paper, analyzed the types and sizes of explosion crater with different scaled burial depths through field tests and numerical simulation.
View Article and Find Full Text PDFMonitoring the building blast vibration signal is an efficient way to determine the power of blast vibration hazards. Due to the harsh measurement environment, noise is inevitably introduced into the recorded signals. This research presents a denoising approach based on Improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN) and Composite Multiscale Permutation Entropy (CMPE).
View Article and Find Full Text PDFUnexpected ground impacts can seriously affect the stability and operational safety of buried pipelines. In this paper, a full-scale modeling test of the dynamic response of a buried concrete pipeline under falling rock impact based on dynamic sensor testing was conducted. A commercially available reinforced concrete pipeline, buried in a clayey soil site, was used, and a 50 kg concrete ball was used to investigate the impact above the pipeline.
View Article and Find Full Text PDFIn order to analyze the axial compressive properties of ultra-high-toughness cementitious composite (UHTCC)-confined recycled aggregate concrete (RAC), a batch of UHTCC-confined RAC components was designed and manufactured according to the requirements of GB/T50081-2002 specifications. After analyzing the surface failure phenomenon, load-displacement curves, scanning electron microscope (SEM), and parameter analysis of the specimen, the result shows that UHTCC-confined RAC is an effective confinement method, which can effectively improve the mechanical properties and control the degree of surface failure of RAC structures. Compared with the unconfined specimen, the maximum peak load of the UHTCC confinement layer with a thickness of 10 mm and 20 mm increased by 44.
View Article and Find Full Text PDFAiming at the problem of displacement of collapse direction caused by the impact of the high-rise reinforced concrete chimney in the process of blasting demolition, combined with the monitoring methods such as high-speed photography observation, piezoelectric ceramic sensor, and blasting vibration monitor, the impact process of the 180 m high chimney was comprehensively analyzed. The results show that the chimney will experience multiple 'weight loss' and 'overweight' effects during the sit-down process, inducing compressive stress waves in the chimney. When the sit-down displacement is large, the broken reinforced concrete at the bottom can play a significant buffering effect, and the 'overweight' effect gradually weakens until the sit-down stops.
View Article and Find Full Text PDFSi-containing transition-metal nitrides TiSiN, ZrSiN and HfSiN with conventional rock salt B1 structure exhibit superior hardness, strength and oxidation resistance. However, the potential phases of the ternary systems at various pressures remain unexplored. In this work, we firstly studied the potential structures of TiSiN, ZrSiN and HfSiN in pressures of 0-100 GPa.
View Article and Find Full Text PDFThe rapid heat loss and corrosion of nano-aluminum limits the energy performance of metastable intermolecular composites (MICs) in aquatic conditions. In this work, superhydrophobic n-Al/PVDF films were fabricated by the cryogel-templated method. The underwater ignition performance of the energetic films was investigated.
View Article and Find Full Text PDFA key aspect of urban blasting engineering is evaluating the safety of the blasting dynamic load on the adjacent high-density polyethylene water supply pipeline and controlling the negative impact of the blasting vibration load on the pipeline. According to the special characteristics of the soil layer in Shenzhen coastal city, a field blasting test of a full-scale pre-buried HDPE pipeline was carried out, and the distribution characteristics of the blasting vibration velocity and dynamic strain were analyzed. The finite element model was established by LSDYNA, and the reliability of the calculation model and parameters was verified by comparing with the field test data.
View Article and Find Full Text PDF