Publications by authors named "Yingjuan Zhou"

There exists a pressing need for a non-invasive panel that differentiates mild fibrosis from non-fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). In this work, we applied quantitative lipidomics and sterolomics on sera from the PERSONS cohort with biopsy-based histological assessment of liver pathology. We trained a lasso regression model using quantitative omics data and clinical variables, deriving a combinatorial panel of lipids and clinical indices that differentiates mild fibrosis (>F1, n = 324) from non-fibrosis (F0, n = 195), with an area under receiver operating characteristic curve (AUROC) at 0.

View Article and Find Full Text PDF

The regeneration and repair of diabetic wounds, especially those including bacterial infection, have always been difficult and challenging using current treatment. Herein, an effective strategy is reported for constructing glucose-responsive functional hydrogels using nanocomposites as nodes. In fact, tannic acid (TA)-modified ceria nanocomposites (CNPs) and a zinc metal-organic framework (ZIF-8) were employed as nodes.

View Article and Find Full Text PDF

The preparation of hydrogels as drug carriers via radical-mediated polymerization has significant prospects, but the strong oxidizing ability of radicals and the high temperatures generated by the vigorous reactions limits the loading for reducing/heat-sensitive drugs. Herein, an applicable hydrogel synthesized by radical-mediated polymerization is reported for the loading and synergistic application of specific drugs. First, the desired sol is obtained by polymerizing functional monomers using a radical initiator, and then tannic-acid-assisted specific drug mediates sol-branched phenylboric acid group to form the required functional hydrogel (New-gel).

View Article and Find Full Text PDF

Background: The complex hyperglycemic, hypoxic, and reactive oxygen species microenvironment of diabetic wound leads to vascular defects and bacterial growth and current treatment options are relatively limited by their poor efficacy.

Results: Herein, a functional molecule-mediated copper ions co-assembled strategy was constructed for collaborative treatment of diabetic wounds. Firstly, a functional small molecule 2,5-dimercaptoterephthalic acid (DCA) which has symmetrical carboxyl and sulfhydryl structure, was selected for the first time to assisted co-assembly of copper ions to produce multifunctional nanozymes (Cu-DCA NZs).

View Article and Find Full Text PDF

The healing process of infected wounds was limited by bacterial infection, excessive reactive oxygen species (ROS) accumulation, and tissue hypoxia. In order to alleviate the above situations, herein, a copper-rich multifunctional ultra-small Prussian blue nanozymes (HPP@Cu NZs) was constructed for infected wound synergistic treatment. Firstly, hyaluronic acid was modified by branched polyethyleneimine which could form a complex with copper ions, to construct copper-rich Prussian blue nanozymes.

View Article and Find Full Text PDF

Objective: To establish the Omaha System-based intensive care of children with viral encephalitis, compared with the conventional nursing applied in children with severe viral encephalitis for children with clinical symptoms, motor function, the incidence of complications, and the influence of quality of life, to intensive care of children with viral encephalitis way provide certain scientific basis.

Methods: 62 cases of severe viral encephalitis diagnosed and treated in our hospital from X month 20XX to X month 20XX were randomly divided into 31 cases of intervention group and 31 cases of control group. The control group received routine nursing, and the intervention group added Omaha system on the basis of the control group.

View Article and Find Full Text PDF

The hole transporting layers (HTLs) between the electrode and light absorber play a vital role in charge extraction and transport processes in organic solar cells (OSCs). Herein, a bilayer structure HTL of CuSCN/TFB is formed by soluble copper(I) thiocyanate (CuSCN) and poly[(9,9-dioctylfluorenyl-2,7-diyl)--(4,4'-(-(4-butylphenyl)))] (TFB). The excellent charge extraction capability is proved in nonfullerene PM6:Y6 and fullerene PTB7-Th:PCBM blend system-based cells.

View Article and Find Full Text PDF

In this work, we report the effort to develop high-efficiency inverted polymer solar cells (PSCs) by applying a solution-processable bilayer ZnO/carbon quantum dots (C-QDs) electron extraction layer (EEL). It is shown that the use of the bilayer EEL helps to suppress the exciton quenching by passivating the ZnO surface defects in the EEL, leading to an enhanced exciton dissociation, reduced charge recombination and more efficient charge extraction probability, and thereby achieving high power conversion efficiency (PCE). The inverted PSCs, based on the blend of poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} and [6,6]-phenyl C71-butyric acid methyl ester, possess a significant improvement in PCE of ∼9.

View Article and Find Full Text PDF