Simultaneously, multiplexed genome engineering and targeting multiple genomic loci are valuable to elucidating gene interactions and characterizing genetic networks that affect phenotypes. Here, we developed a general CRISPR-based platform to perform four functions and target multiple genome loci encoded in a single transcript. To establish multiple functions for multiple loci targets, we fused four RNA hairpins, MS2, PP7, com and boxB, to stem-loops of gRNA (guide RNA) scaffolds, separately.
View Article and Find Full Text PDFBackground: Insulin regulates glucose homeostasis and has important effects on metabolism, cell growth, and differentiation. Depending on the cell type and physiological context, insulin signal has specific pathways and biological outcomes in different tissues and cells. For studying the signal pathway of insulin on glycolipid metabolism in porcine embryonic fibroblast (PEF), we used high-throughput sequencing to monitor gene expression patterns regulated by insulin.
View Article and Find Full Text PDFPurpose: Cone beam computed tomography (CBCT) offers advantages such as high ray utilization rate, the same spatial resolution within and between slices, and high precision. It is one of the most actively studied topics in international computed tomography (CT) research. However, its application is hindered owing to scatter artifacts.
View Article and Find Full Text PDFPolycystin-1 (Pkd1) interacts with polycystin-2 (Pkd2) to form an interdependent signaling complex. Selective deletion of Pkd1 in the osteoblast lineage reciprocally regulates osteoblastogenesis and adipogenesis. The role of Pkd2 in skeletal development has not been defined.
View Article and Find Full Text PDFIncreases in fibroblastic growth factor 23 (FGF23 or Fgf23) production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH). Fibroblastic growth factor (FGF) signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1) in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes.
View Article and Find Full Text PDF