Background: The tumor microenvironment (TME) has a central role in the oncogenesis of osteosarcomas. The composition of the TME is essential for the interaction between tumor and immune cells. The aim of this study was to establish a prognostic index (TMEindex) for osteosarcoma based on the TME, from which estimates about patient survival and individual response to immune checkpoint inhibitor (ICI) therapy can be deduced.
View Article and Find Full Text PDFRegulation of chromosome condensation 2 (RCC2) is associated with the cell cycle and is a crucial regulator of the chromatin condensation 1 (RCC1) family. The members of this family were normally regulators in the process of DNA replication and nucleocytoplasmic transport. RCC2 overexpression may lead to tumor formation and poor prognosis in some tumors including breast cancer and lung adenocarcinoma.
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSCC) comprise a group of malignant tumors arising from the squamous epithelium of the oral cavity, pharynx, and larynx. HNSCC is the 6th most common cancer in the world, with approximately 650,000 new cases and 400,000 deaths annually. Although survival rates have improved, HNSCC therapy may result in short - or long-term morbidity in approximately 50% of cases.
View Article and Find Full Text PDFDespite various treatment attempts, the heterogenous group of soft tissue sarcomata (STS) with more than 100 subtypes still shows poor outcomes. Therefore, effective biomarkers for prognosis prediction and personalized treatment are of high importance. The Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase (PLOD) gene family, which is related to multiple cancer entities, consists of three members which encode important enzymes for the formation of connective tissue.
View Article and Find Full Text PDFKinesin family member C1 (KIFC1) is a minus-end-directed motor protein that is critically involved in microtubule crosslinking and spindle formation. KIFC1 is essential for supernumerary centrosomes, and it is associated with the initiation and progression of cancers. In the present study, we initially reviewed the The Cancer Genome Atlas database and observed that is abundantly expressed in most types of tumors.
View Article and Find Full Text PDFPituitary tumor-transforming gene 1 (PTTG1) encodes a multifunctional protein that is involved in many cellular processes. However, the potential role of PTTG1 in tumor formation and its prognostic function in human pan-cancer is still unknown. The analysis of gene alteration, PTTG1 expression, prognostic function, and PTTG1-related immune analysis in 33 types of tumors was performed based on various databases such as The Cancer Genome Atlas database, the Genotype-Tissue Expression database, and the Human Protein Atlas database.
View Article and Find Full Text PDFSoft tissue sarcomas (STS) are a rare disease with high recurrence rates and poor prognosis. Missing therapy options together with the high heterogeneity of this tumor type gives impetus to the development of individualized treatment approaches. This study identifies potential tumor antigens for the development of mRNA tumor vaccines for STS and explores potential immune subtypes, stratifying patients for immunotherapy.
View Article and Find Full Text PDFThe overexpression of the enzymes involved in the degradation of procollagen lysine is correlated with various tumor entities. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) expression was found to be correlated to the progression and migration of cancer cells in gastric, lung and prostate cancer. Here, we analyzed the gene expression, protein expression, and the clinical parameters of survival across 33 cancers based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC), function annotation of the mammalian genome 5 (FANTOM5), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) databases.
View Article and Find Full Text PDFRegulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored.
View Article and Find Full Text PDF