Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation.
View Article and Find Full Text PDFModified biochars have been widely applied in ameliorating environmental problems. However, the effect of modified biochar on suppressing CH emission in rice paddy soil is not fully understood. In order to further study CH regulation in paddy soil via the modification of biochar and explore its influence on key archaeal communities, two modified biochars were generated with the pre-treatment of nitric acid (NBC) and hydrogen peroxide (OBC), respectively, and a control group was setup with water-washed biochar (WBC).
View Article and Find Full Text PDFBiochar was proved as an electron shuttle to facilitate extracellular electron transfer (EET) of electrochemically active bacteria (EAB); however, its underlying mechanism was not fully understood. In this study, we aimed to further explore how the regulation of surface functional groups of biochar would affect the microbial iron reduction process of Geobacter sulfurreducens as a typical EAB. Two modified biochars were achieved after HNO (NBC) and NaBH (RBC) pretreatments, and a control biochar was produced after deionized water (WBC) washing.
View Article and Find Full Text PDF