Publications by authors named "Yingjin Lu"

Nociceptive signals are usually transmitted to layer 4 neurons in somatosensory cortex via the spinothalamic-thalamocortical pathway. The layer 5 corticospinal neurons in sensorimotor cortex are reported to receive the output of neurons in superficial layers; and their descending axons innervate the spinal cord to regulate basic sensorimotor functions. Here, we show that a subset of layer 5 neurons receives spinal inputs through a direct spino-cortical circuit bypassing the thalamus, and thus define these neurons as spino-cortical recipient neurons (SCRNs).

View Article and Find Full Text PDF

Pain and itch are distinct sensations arousing evasion and compulsive desire for scratching, respectively. It's unclear whether they could invoke different neural networks in the brain. Here, we use the type 1 herpes simplex virus H129 strain to trace the neural networks derived from two types of dorsal root ganglia (DRG) neurons: one kind of polymodal nociceptors containing galanin () and one type of pruriceptors expressing neurotensin ().

View Article and Find Full Text PDF

DRG neurons are classified into distinct types to mediate the somatosensation with different modalities. Recently, transcriptional profilings of DRG neurons by single-cell RNA-sequencing have provided new insights into the neuron typing and functional properties. Zinc-finger CCHC domain-containing 12 () was reported to be the representative marker for a subtype of galanin-positive () DRG neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates gene mutations that may cause congenital intellectual disabilities (ID) in Chinese Han children, identifying a specific SNP mutation in the FGF13 gene.
  • This SNP reduces the translation of the FGF13 protein, which is crucial for stabilizing nerve structures in developing neurons.
  • The mutation leads to impaired neuronal migration, as seen in mice models, resulting in cognitive challenges like weakened learning and memory.
View Article and Find Full Text PDF

Peripheral nerve injury could lead to chronic neuropathic pain. Understanding transcriptional changes induced by nerve injury could provide fundamental insights into the complex pathogenesis of neuropathic pain. Gene expression profiles of dorsal root ganglia (DRG) in neuropathic pain condition have been studied.

View Article and Find Full Text PDF

Pancreatitis-associated proteins (PAPs) display multiple functions in visceral diseases. Previous studies showed that the expression level of PAP-I was low in the DRG of naive rats but was expressed after peripheral nerve injury. However, its role in neuropathic pain remains unknown.

View Article and Find Full Text PDF

Opioid receptors play an important role in mediating the spinal analgesia. The μ-opioid receptor is the major target of opioid drugs widely used in clinics. However, the regulatory mechanisms of analgesic effect and tolerance for clinical μ-opioid receptor-targeting opioids remain to be fully investigated.

View Article and Find Full Text PDF

The current knowledge about heat nociception is mainly confined to the thermosensors, including the transient receptor potential cation channel V1 expressed in the nociceptive neurons of dorsal root ganglion (DRG). However, the loss of thermosensors only partially impairs heat nociception, suggesting the existence of undiscovered mechanisms. We found that the loss of an intracellular fibroblast growth factor (FGF), FGF13, in the mouse DRG neurons selectively abolished heat nociception.

View Article and Find Full Text PDF

The aim of the present study was to develop three-dimensional (3D) culture model, a more pathologically relevant model, of human breast cancer for drug resistance study. MCF-7 cells were embedded within collagen gel to establish 3D culture model. Cellular morphology was observed using Carmine and HE staining.

View Article and Find Full Text PDF

Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering.

View Article and Find Full Text PDF

Na⁺, K⁺-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and β subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown.

View Article and Find Full Text PDF

Emerging evidence suggests that the suppressive modulators released from nociceptive afferent neurons contribute to pain regulation. However, the suppressive modulators expressed in small-diameter neurons of the dorsal root ganglion remain to be further identified. The present study shows that the activin C expressed in small dorsal root ganglion neurons is required for suppressing inflammation-induced nociceptive responses.

View Article and Find Full Text PDF

Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG).

View Article and Find Full Text PDF

Stimulus-induced exocytosis of large dense-core vesicles (LDCVs) leads to discharge of neuropeptides and fusion of LDCV membranes with the plasma membrane. However, the contribution of LDCVs to the properties of the neuronal membrane remains largely unclear. The present study found that LDCVs were associated with multiple receptors, channels and signaling molecules, suggesting that neuronal sensitivity is modulated by an LDCV-mediated mechanism.

View Article and Find Full Text PDF

δ-opioid receptors (DORs) form heteromers with μ-opioid receptors (MORs) and negatively regulate MOR-mediated spinal analgesia. However, the underlying mechanism remains largely unclear. The present study shows that the activity of MORs can be enhanced by preventing MORs from DOR-mediated codegradation.

View Article and Find Full Text PDF

B-type natriuretic peptide (BNP) has been known to be secreted from cardiac myocytes and activate its receptor, natriuretic peptide receptor-A (NPR-A), to reduce ventricular fibrosis. However, the function of BNP/NPR-A pathway in the somatic sensory system has been unknown. In the present study, we report a novel function of BNP in pain modulation.

View Article and Find Full Text PDF

Peripheral nerve injury-induced structural and chemical modifications of the sensory circuits in the dorsal horn of the spinal cord contribute to the mechanism of neuropathic pain. In contrast to the topographic projection of primary afferents in laminae I-IV in the rat spinal cord, the primary afferents of Macaca mulatta monkeys almost exclusively project into laminae I-II of the spinal cord. After peripheral nerve injury, up-regulation of galanin has been found in sensory neurons in both monkey and rat dorsal root ganglia.

View Article and Find Full Text PDF

Opiate abuse causes adaptive changes in several processes of synaptic transmission in which the glutamatergic system appears a critical element involved in opiate tolerance and dependence, but the underlying mechanisms remain unclear. In the present study, we found that glutamate uptake in hippocampal synaptosomes was significantly increased (by 70% in chronic morphine-treated rats) during the morphine withdrawal period, likely attributable to an increase in the number of functional glutamate transporters. Immunoblot analysis showed that expression of GLT1 (glutamate transporter subtype 1) was identified to be upregulated in synaptosomes but not in total tissues, suggesting a redistribution of glutamate transporter expression.

View Article and Find Full Text PDF

Using cDNA array, we observed the expression of eight members of the fibroblast growth factor (FGF) family, FGF 2, 5, 7, 9, 10, 13 and 14, in rat lumbar 4 and 5 dorsal root ganglia (DRGs). Over a period of 28 days after sciatic nerve transection, the array signals for FGF 2 and 7 were significantly increased in the DRGs, while FGF 13 decreased. Using the reverse transcription polymerase chain reaction (RT-PCR), we confirmed the axotomy-induced changes in the expression of FGF 7 and 13.

View Article and Find Full Text PDF

Peripheral axotomy-induced sprouting of thick myelinated afferents (A-fibers) from laminae III-IV into laminae I-II of the spinal cord is a well-established hypothesis for the structural basis of neuropathic pain. However, we show here that the cholera toxin B subunit (CTB), a neuronal tracer used to demonstrate the sprouting of A-fibers in several earlier studies, also labels unmyelinated afferents (C-fibers) in lamina II and thin myelinated afferents in lamina I, when applied after peripheral nerve transection. The lamina II afferents also contained vasoactive intestinal polypeptide and galanin, two neuropeptides mainly expressed in small dorsal root ganglion (DRG) neurons and C-fibers.

View Article and Find Full Text PDF

Phenotypic modification of dorsal root ganglion (DRG) neurons represents an important mechanism underlying neuropathic pain. However, the nerve injury-induced molecular changes are not fully identified. To determine the molecular alterations in a broader way, we have carried out cDNA array on the genes mainly made from the cDNA libraries of lumbar DRGs of normal rats and of rats 14 days after peripheral axotomy.

View Article and Find Full Text PDF